7 resultados para Feasibility Studies.

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We conducted a pilot study on 10 patients undergoing general surgery to test the feasibility of diffuse reflectance spectroscopy in the visible wavelength range as a noninvasive monitoring tool for blood loss during surgery. Ratios of raw diffuse reflectance at wavelength pairs were tested as a first-pass for estimating hemoglobin concentration. Ratios can be calculated easily and rapidly with limited post-processing, and so this can be considered a near real-time monitoring device. We found the best hemoglobin correlations were when ratios at isosbestic points of oxy- and deoxyhemoglobin were used, specifically 529/500 nm. Baseline subtraction improved correlations, specifically at 520/509 nm. These results demonstrate proof-of-concept for the ability of this noninvasive device to monitor hemoglobin concentration changes due to surgical blood loss. The 529/500 nm ratio also appears to account for variations in probe pressure, as determined from measurements on two volunteers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) (129)Xe to probe the regional uptake of alveolar gases by directly imaging HP (129)Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129)Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129)Xe. The dissolved HP (129)Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129)Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129)Xe imaging reports on pulmonary function at a fundamental level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The Affordable Care Act encourages healthcare systems to integrate behavioral and medical healthcare, as well as to employ electronic health records (EHRs) for health information exchange and quality improvement. Pragmatic research paradigms that employ EHRs in research are needed to produce clinical evidence in real-world medical settings for informing learning healthcare systems. Adults with comorbid diabetes and substance use disorders (SUDs) tend to use costly inpatient treatments; however, there is a lack of empirical data on implementing behavioral healthcare to reduce health risk in adults with high-risk diabetes. Given the complexity of high-risk patients' medical problems and the cost of conducting randomized trials, a feasibility project is warranted to guide practical study designs. METHODS: We describe the study design, which explores the feasibility of implementing substance use Screening, Brief Intervention, and Referral to Treatment (SBIRT) among adults with high-risk type 2 diabetes mellitus (T2DM) within a home-based primary care setting. Our study includes the development of an integrated EHR datamart to identify eligible patients and collect diabetes healthcare data, and the use of a geographic health information system to understand the social context in patients' communities. Analysis will examine recruitment, proportion of patients receiving brief intervention and/or referrals, substance use, SUD treatment use, diabetes outcomes, and retention. DISCUSSION: By capitalizing on an existing T2DM project that uses home-based primary care, our study results will provide timely clinical information to inform the designs and implementation of future SBIRT studies among adults with multiple medical conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children with sickle cell disease (SCD) have a high risk of neurocognitive impairment. No known research, however, has examined the impact of neurocognitive functioning on quality of life in this pediatric population. In addition, limited research has examined neurocognitive interventions for these children. In light of these gaps, two studies were undertaken to (a) examine the relationship between cognitive functioning and quality of life in a sample of children with SCD and (b) investigate the feasibility and preliminary efficacy of a computerized working memory training program in this population. Forty-five youth (ages 8-16) with SCD and a caregiver were recruited for the first study. Participants completed measures of cognitive ability, quality of life, and psychosocial functioning. Results indicated that cognitive ability significantly predicted child- and parent-reported quality of life among youth with SCD. In turn, a randomized-controlled trial of a computerized working memory program was undertaken. Eighteen youth with SCD and a caregiver enrolled in this study, and were randomized to a waitlist control or the working memory training condition. Data pertaining to cognitive functioning, psychosocial functioning, and disease characteristics were obtained from participants. The results of this study indicated a high degree of acceptance for this intervention but poor feasibility in practice. Factors related to feasibility were identified. Implications and future directions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic Ocean and Western Antarctic Peninsula (WAP) are the fastest warming regions on the planet and are undergoing rapid climate and ecosystem changes. Until we can fully resolve the coupling between biological and physical processes we cannot predict how warming will influence carbon cycling and ecosystem function and structure in these sensitive and climactically important regions. My dissertation centers on the use of high-resolution measurements of surface dissolved gases, primarily O2 and Ar, as tracers or physical and biological functioning that we measure underway using an optode and Equilibrator Inlet Mass Spectrometry (EIMS). Total O2 measurements are common throughout the historical and autonomous record but are influenced by biological (net metabolic balance) and physical (temperature, salinity, pressure changes, ice melt/freeze, mixing, bubbles and diffusive gas exchange) processes. We use Ar, an inert gas with similar solubility properties to O2, to devolve distinct records of biological (O2/Ar) and physical (Ar) oxygen. These high-resolution measurements that expose intersystem coupling and submesoscale variability were central to studies in the Arctic Ocean, WAP and open Southern Ocean that make up this dissertation.

Key findings of this work include the documentation of under ice and ice-edge blooms and basin scale net sea ice freeze/melt processes in the Arctic Ocean. In the WAP O2 and pCO2 are both biologically driven and net community production (NCP) variability is controlled by Fe and light availability tied to glacial and sea ice meltwater input. Further, we present a feasibility study that shows the ability to use modeled Ar to derive NCP from total O2 records. This approach has the potential to unlock critical carbon flux estimates from historical and autonomous O2 measurements in the global oceans.