3 resultados para Fair Packaging and Labeling Act, 1965.
em Duke University
Resumo:
Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site(2,3). Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)(4,5). This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3'-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites(6-11).
Resumo:
In chimpanzees, most females disperse from the community in which they were born to reproduce in a new community, thereby eliminating the risk of inbreeding with close kin. However, across sites, some females breed in their natal community, raising questions about the flexibility of dispersal, the costs and benefits of different strategies and the mitigation of costs associated with dispersal and integration. In this dissertation I address these questions by combining long-term behavioral data and recent field observations on maturing and young adult females in Gombe National Park with an experimental manipulation of relationship formation in captive apes in the Congo.
To assess the risk of inbreeding for females who do and do not disperse, 129 chimpanzees were genotyped and relatedness between each dyad was calculated. Natal females were more closely related to adult community males than were immigrant females. By examining the parentage of 58 surviving offspring, I found that natal females were not more related to the sires of their offspring than were immigrant females, despite three instances of close inbreeding. The sires of all offspring were less related to the mothers than non-sires regardless of the mother’s residence status. These results suggest that chimpanzees are capable of detecting relatedness and that, even when remaining natal, females can largely avoid, though not eliminate, inbreeding.
Next, I examined whether dispersal was associated with energetic, social, physiological and/or reproductive costs by comparing immigrant (n=10) and natal (n=9) females of similar age using 2358 hours of observational data. Natal and immigrant females did not differ in any energetic metric. Immigrant females received aggression from resident females more frequently than natal females. Immigrants spent less time in social grooming and more time self-grooming than natal females. Immigrant females primarily associated with resident males, had more social partners and lacked close social allies. There was no difference in levels of fecal glucocorticoid metabolites in immigrant and natal females. Immigrant females gave birth 2.5 years later than natal females, though the survival of their first offspring did not differ. These results indicate that immigrant females in Gombe National Park do not face energetic deficits upon transfer, but they do enter a hostile social environment and have a delayed first birth.
Next, I examined whether chimpanzees use condition- and phenotype-dependent cues in making dispersal decisions. I examined the effect of social and environmental conditions present at the time females of known age matured (n=25) on the females’ dispersal decisions. Females were more likely to disperse if they had more male maternal relatives and thus, a high risk of inbreeding. Females with a high ranking mother and multiple maternal female kin tended to disperse less frequently, suggesting that a strong female kin network provides benefits to the maturing daughter. Females were also somewhat less likely to disperse when fewer unrelated males were present in the group. Habitat quality and intrasexual competition did not affect dispersal decisions. Using a larger sample of 62 females observed as adults in Gombe, I also detected an effect of phenotypic differences in personality on the female’s dispersal decisions; extraverted, agreeable and open females were less likely to disperse.
Natural observations show that apes use grooming and play as social currency, but no experimental manipulations have been carried out to measure the effects of these behaviors on relationship formation, an essential component of integration. Thirty chimpanzees and 25 bonobos were given a choice between an unfamiliar human who had recently groomed or played with them over one who did not. Both species showed a preference for the human that had interacted with them, though the effect was driven by males. These results support the idea that grooming and play act as social currency in great apes that can rapidly shape social relationships between unfamiliar individuals. Further investigation is needed to elucidate the use of social currency in female apes.
I conclude that dispersal in female chimpanzees is flexible and the balance of costs and benefits varies for each individual. Females likely take into account social cues present at maturity and their own phenotype in choosing a settlement path and are especially sensitive to the presence of maternal male kin. The primary cost associated with philopatry is inbreeding risk and the primary cost associated with dispersal is delay in the age at first birth, presumably resulting from intense social competition. Finally, apes may strategically make use of affiliative behavior in pursuing particular relationships, something that should be useful in the integration process.
Resumo:
N-Heterocycles are ubiquitous in biologically active natural products and pharmaceuticals. Yet, new syntheses and modifications of N-heterocycles are continually of interest for the purposes of expanding chemical space, finding quicker synthetic routes, better pharmaceuticals, and even new handles for molecular labeling. There are several iterations of molecular labeling; the decision of where to place the label is as important as of which visualization technique to emphasize.
Piperidine and indole are two of the most widely distributed N-heterocycles and thus were targeted for synthesis, functionalization, and labeling. The major functionalization of these scaffolds should include a nitrogen atom, while the inclusion of other groups will expand the utility of the method. Towards this goal, ease of synthesis and elimination of step-wise transformations are of the utmost concern. Here, the concept of electrophilic amination can be utilized as a way of introducing complex secondary and tertiary amines with minimal operations.
Molecular tags should be on or adjacent to an N-heterocycle as they are normally the motifs implicated at the binding site of enzymes and receptors. The labeling techniques should be useful to a chemical biologist, but should also in theory be useful to the medical community. The two types of labeling that are of interest to a chemist and a physician would be positron emission tomography (PET) and magnetic resonance imaging (MRI).
Coincidentally, the 3-positions of both piperidine and indole are historically difficult to access and modify. However, using electrophilic amination techniques, 3-functionalized piperidines can be synthesized in good yields from unsaturated amines. In the same manner, 3-labeled piperidines can be obtained; the piperidines can either be labeled with an azide for biochemical research or an 18F for PET imaging research. The novel electrophiles, N-benzenesulfonyloxyamides, can be reacted with indole in one of two ways: 3-amidation or 1-amidomethylation, depending on the exact reaction conditions. Lastly, a novel, hyperpolarizable 15N2-labeled diazirine has been developed as an exogenous and versatile tag for use in magnetic resonance imaging.