7 resultados para FUNCTIONAL-GROUPS

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent N(ϵ)-(3-[(*)I]iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-D-GEEEK (Mal-D-GEEEK-[(*)I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. METHODS: N(α)-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. RESULTS: NHS-[(131)I]IB-D-EEEG was produced in 53.8%±13.4% and conjugated to trastuzumab in 39.5%±7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[(131)I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[(125)I]IB demonstrated similar intracellular trapping for both conjugates at 1h ((131)I, 84.4%±6.1%; (125)I, 88.6%±5.2%) through 24h ((131)I, 60.7%±6.8%; (125)I, 64.9%±6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[(131)I]IB-D-EEEG, 29.8%±3.6%ID/g; trastuzumab-Mal-D-GEEEK-[(125)I]IB, 45.3%±5.3%ID/g) and was significantly higher for (125)I at all time points. In general, normal tissue levels were lower for trastuzumab-NHS-[(131)I]IB-D-EEEG, with the differences being greatest in kidneys ((131)I, 2.2%±0.4%ID/g; (125)I, 16.9%±2.8%ID/g at 144 h). CONCLUSION: NHS-[(131)I]IB-D-EEEG warrants further evaluation as a residualizing radioiodination agent for labeling internalizing antibodies/fragments, particularly for applications where excessive renal accumulation could be problematic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate that interferometric lithography provides a fast, simple approach to the production of patterns in self-assembled monolayers (SAMs) with high resolution over square centimeter areas. As a proof of principle, two-beam interference patterns, formed using light from a frequency-doubled argon ion laser (244 nm), were used to pattern methyl-terminated SAMs on gold, facilitating the introduction of hydroxyl-terminated adsorbates and yielding patterns of surface free energy with a pitch of ca. 200 nm. The photopatterning of SAMs on Pd has been demonstrated for the first time, with interferometric exposure yielding patterns of surface free energy with similar features sizes to those obtained on gold. Gold nanostructures were formed by exposing SAMs to UV interference patterns and then immersing the samples in an ethanolic solution of mercaptoethylamine, which etched the metal substrate in exposed areas while unoxidized thiols acted as a resist and protected the metal from dissolution. Macroscopically extended gold nanowires were fabricated using single exposures and arrays of 66 nm gold dots at 180 nm centers were formed using orthogonal exposures in a fast, simple process. Exposure of oligo(ethylene glycol)-terminated SAMs to UV light caused photodegradation of the protein-resistant tail groups in a substrate-independent process. In contrast to many protein patterning methods, which utilize multiple steps to control surface binding, this single step process introduced aldehyde functional groups to the SAM surface at exposures as low as 0.3 J cm(-2), significantly less than the exposure required for oxidation of the thiol headgroup. Although interferometric methods rely upon a continuous gradient of exposure, it was possible to fabricate well-defined protein nanostructures by the introduction of aldehyde groups and removal of protein resistance in nanoscopic regions. Macroscopically extended, nanostructured assemblies of streptavidin were formed. Retention of functionality in the patterned materials was demonstrated by binding of biotinylated proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© The Royal Society of Chemistry.Force reactive functional groups, or mechanophores, have emerged as the basis of a potential strategy for sensing and countering stress-induced material failure. The general utility of this strategy is limited, however, because the levels of mechanophore activation in the bulk are typically low and observed only under large, typically irreversible strains. Strategies that enhance activation are therefore quite useful. Molecular-level design principles by which to engineer enhanced mechanophore activity are reviewed, with an emphasis on quantitative structure-activity studies determined for a family of gem-dihalocyclopropane mechanophores. This journal is

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of DNA as a polymeric building material transcends its function in biology and is exciting in bionanotechnology for applications ranging from biosensing, to diagnostics, and to targeted drug delivery. These applications are enabled by DNA’s unique structural and chemical properties, embodied as a directional polyanion that exhibits molecular recognition capabilities. Hence, the efficient and precise synthesis of high molecular weight DNA materials has become key to advance DNA bionanotechnology. Current synthesis methods largely rely on either solid phase chemical synthesis or template-dependent polymerase amplification. The inherent step-by-step fashion of solid phase synthesis limits the length of the resulting DNA to typically less than 150 nucleotides. In contrast, polymerase based enzymatic synthesis methods (e.g., polymerase chain reaction) are not limited by product length, but require a DNA template to guide the synthesis. Furthermore, advanced DNA bionanotechnology requires tailorable structural and self-assembly properties. Current synthesis methods, however, often involve multiple conjugating reactions and extensive purification steps.

The research described in this dissertation aims to develop a facile method to synthesize high molecular weight, single stranded DNA (or polynucleotide) with versatile functionalities. We exploit the ability of a template-independent DNA polymerase−terminal deoxynucleotidyl transferase (TdT) to catalyze the polymerization of 2’-deoxyribonucleoside 5’-triphosphates (dNTP, monomer) from the 3’-hydroxyl group of an oligodeoxyribonucleotide (initiator). We termed this enzymatic synthesis method: TdT catalyzed enzymatic polymerization, or TcEP.

Specifically, this dissertation is structured to address three specific research aims. With the objective to generate high molecular weight polynucleotides, Specific Aim 1 studies the reaction kinetics of TcEP by investigating the polymerization of 2’-deoxythymidine 5’-triphosphates (monomer) from the 3’-hydroxyl group of oligodeoxyribothymidine (initiator) using in situ 1H NMR and fluorescent gel electrophoresis. We found that TcEP kinetics follows the “living” chain-growth polycondensation mechanism, and like in “living” polymerizations, the molecular weight of the final product is determined by the starting molar ratio of monomer to initiator. The distribution of the molecular weight is crucially influenced by the molar ratio of initiator to TdT. We developed a reaction kinetics model that allows us to quantitatively describe the reaction and predict the molecular weight of the reaction products.

Specific Aim 2 further explores TcEP’s ability to transcend homo-polynucleotide synthesis by varying the choices of initiators and monomers. We investigated the effects of initiator length and sequence on TcEP, and found that the minimum length of an effective initiator should be 10 nucleotides and that the formation of secondary structures close to the 3’-hydroxyl group can impede the polymerization reaction. We also demonstrated TcEP’s capacity to incorporate a wide range of unnatural dNTPs into the growing chain, such as, hydrophobic fluorescent dNTP and fluoro modified dNTP. By harnessing the encoded nucleotide sequence of an initiator and the chemical diversity of monomers, TcEP enables us to introduce molecular recognition capabilities and chemical functionalities on the 5’-terminus and 3’-terminus, respectively.

Building on TcEP’s synthesis capacities, in Specific Aim 3 we invented a two-step strategy to synthesize diblock amphiphilic polynucleotides, in which the first, hydrophilic block serves as a macro-initiator for the growth of the second block, comprised of natural and/or unnatural nucleotides. By tuning the hydrophilic length, we synthesized the amphiphilic diblock polynucleotides that can self-assemble into micellar structures ranging from star-like to crew-cut morphologies. The observed self-assembly behaviors agree with predictions from dissipative particle dynamics simulations as well as scaling law for polyelectrolyte block copolymers.

In summary, we developed an enzymatic synthesis method (i.e., TcEP) that enables the facile synthesis of high molecular weight polynucleotides with low polydispersity. Although we can control the nucleotide sequence only to a limited extent, TcEP offers a method to integrate an oligodeoxyribonucleotide with specific sequence at the 5’-terminus and to incorporate functional groups along the growing chains simultaneously. Additionally, we used TcEP to synthesize amphiphilic polynucleotides that display self-assemble ability. We anticipate that our facile synthesis method will not only advance molecular biology, but also invigorate materials science and bionanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. METHOD: Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. RESULTS: In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. CONCLUSIONS: In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.