11 resultados para FINE PARTICULATE MATTER SOURCES

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM1-concentrations are encountered in a coastal and rural area: <5000cm-3 and 6μgm-3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM>1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160000cm-3 (traffic intensity 100000vehday-1). Peak values occur in tunnels where numbers exceed 106cm-3. Enhanced PM1 levels (i.e. larger than 9μgm-3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM>1 appear rather uniformly distributed (below 6μgm-3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×103cm-3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100nm). It is further indicated that people residing at some 100m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional hedonic techniques for estimating the value of local amenities rely on the assumption that households move freely among locations. We show that when moving is costly, the variation in housing prices and wages across locations may no longer reflect the value of differences in local amenities. We develop an alternative discrete-choice approach that models the household location decision directly, and we apply it to the case of air quality in US metro areas in 1990 and 2000. Because air pollution is likely to be correlated with unobservable local characteristics such as economic activity, we instrument for air quality using the contribution of distant sources to local pollution-excluding emissions from local sources, which are most likely to be correlated with local conditions. Our model yields an estimated elasticity of willingness to pay with respect to air quality of 0.34-0.42. These estimates imply that the median household would pay $149-$185 (in constant 1982-1984 dollars) for a one-unit reduction in average ambient concentrations of particulate matter. These estimates are three times greater than the marginal willingness to pay estimated by a conventional hedonic model using the same data. Our results are robust to a range of covariates, instrumenting strategies, and functional form assumptions. The findings also confirm the importance of instrumenting for local air pollution. © 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and a cellular infiltrate dominated by eosinophils. Numerous epidemiological studies have related the exacerbation of allergic asthma with an increase in ambient inhalable particulate matter from air pollutants. This is because inhalable particles efficiently deliver airborne allergens deep into the airways, where they can aggravate allergic asthma symptoms. However, the cellular mechanisms by which inhalable particulate allergens (pAgs) potentiate asthmatic symptoms remain unknown, in part because most in vivo and in vitro studies exploring the pathogenesis of allergic asthma use soluble allergens (sAgs). Using a mouse model of allergic asthma, we found that, compared with their sAg counterparts, pAgs triggered markedly heightened airway hyperresponsiveness and pulmonary eosinophilia in allergen-sensitized mice. Mast cells (MCs) were implicated in this divergent response, as the differences in airway inflammatory responses provoked by the physical nature of the allergens were attenuated in MC-deficient mice. The pAgs were found to mediate MC-dependent responses by enhancing retention of pAg/IgE/FcεRI complexes within lipid raft–enriched, CD63(+) endocytic compartments, which prolonged IgE/FcεRI-initiated signaling and resulted in heightened cytokine responses. These results reveal how the physical attributes of allergens can co-opt MC endocytic circuitry and signaling responses to aggravate pathological responses of allergic asthma in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient sampling for the Pittsburgh Air Quality Study (PAQS) was conducted from July 2001 to September 2002. The study was designed (1) to characterize particulate matter (PM) by examination of size, surface area, and volume distribution, chemical composition as a function of size and on a single particle basis, morphology, and temporal and spatial variability in the Pittsburgh region; (2) to quantify the impact of the various sources (transportation, power plants, biogenic sources, etc.) on the aerosol concentrations in the area; and (3) to develop and evaluate the next generation of atmospheric aerosol monitoring and modeling techniques. The PAQS objectives, study design, site descriptions and routine and intensive measurements are presented. Special study days are highlighted, including those associated with elevated concentrations of daily average PM2.5 mass. Monthly average and diurnal patterns in aerosol number concentration, and aerosol nitrate, sulfate, elemental carbon, and organic carbon concentrations, light scattering as well as gas-phase ozone, nitrogen oxides, and carbon monoxide are discussed with emphasis on the processes affecting them. Preliminary findings reveal day-to-day variability in aerosol mass and composition, but consistencies in seasonal average diurnal profiles and concentrations. For example, the seasonal average variations in the diurnal PM2.5 mass were predominately driven by the sulfate component. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 microg/kg) and radioactivity (226Ra + 228Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (< 10 microm) containing these toxics into the atmosphere that may pose a health risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air pollution is a common problem. Particulate matter generated from air pollution has been tied to adverse health outcomes associated with cardiovascular disease. Biomass fuels are a specific contributor to increased particulate matter and arise as a result of indoor heating, cook stoves and indoor food preparation. This is a two part cross sectional study looking at communities in the Madre de Dios region. Survey data was collected from 9 communities along the Madre de Dios River. Individual level household PM2.5 was also collected as a means to generate average PM data stratified by fuel use. Data collection was affected by a number of outside factors, which resulted in a loss of data. Results from the cross-sectional study indicate that hypertension is not a significant source of morbidity. Obesity is prevalent and significantly associated with kitchen venting method indicating a potential relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The role of PM10 in the development of allergic diseases remains controversial among epidemiological studies, partly due to the inability to control for spatial variations in large-scale risk factors. This study aims to investigate spatial correspondence between the level of PM10 and allergic diseases at the sub-district level in Seoul, Korea, in order to evaluate whether the impact of PM10 is observable and spatially varies across the subdistricts. METHODS: PM10 measurements at 25 monitoring stations in the city were interpolated to 424 sub-districts where annual inpatient and outpatient count data for 3 types of allergic diseases (atopic dermatitis, asthma, and allergic rhinitis) were collected. We estimated multiple ordinary least square regression models to examine the association of the PM10 level with each of the allergic diseases, controlling for various sub-district level covariates. Geographically weighted regression (GWR) models were conducted to evaluate how the impact of PM10 varies across the sub-districts. RESULTS: PM10 was found to be a significant predictor of atopic dermatitis patient count (P<0.01), with greater association when spatially interpolated at the sub-district level. No significant effect of PM10 was observed on allergic rhinitis and asthma when socioeconomic factors were controlled for. GWR models revealed spatial variation of PM10 effects on atopic dermatitis across the sub-districts in Seoul. The relationship of PM10 levels to atopic dermatitis patient counts is found to be significant only in the Gangbuk region (P<0.01), along with other covariates including average land value, poverty rate, level of education and apartment rate (P<0.01). CONCLUSIONS: Our findings imply that PM10 effects on allergic diseases might not be consistent throughout Seoul. GIS-based spatial modeling techniques could play a role in evaluating spatial variation of air pollution impacts on allergic diseases at the sub-district level, which could provide valuable guidelines for environmental and public health policymakers.