4 resultados para FEMORAL-HEAD

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Dislocation remains a difficult problem in total hip arthroplasty. Large-diameter femoral heads may lower the incidence of dislocation by enhancing the jump distance and decreasing impingement, but their performance against small-diameter heads has not been assessed. This study compared the mid-term radiographic and functional outcomes of two matched cohorts of patients undergoing total hip arthroplasty who had a high pre-operative risk for dislocation and who received either small-diameter (26- or 28-millimeters) or large-diameter (≥36-millimeters) femoral heads. METHODS: All patients who received large-diameter heads (≥36-millimeter) between 2002 and 2005, and who had pre-operative risk factors for dislocation, were identified in the institution's joint registry. Forty-one patients (52 hips) who received large-diameter heads were identified, and these patients were matched to 48 patients (52 hips) in the registry who received small-diameter femoral heads. RESULTS: At mean final follow-up of 62 months (range, 49 to 101 months), both groups achieved excellent functional outcomes as measured by Harris Hip scores, with slightly better final scores in the large-diameter group (90 vs. 83 points). No patient showed any radiographic signs of loosening. No patient dislocated in the large-diameter femoral head group; the smaller-diameter group had a greater rate of dislocation (3.8%, 2 out of 52). CONCLUSIONS: Large-diameter femoral head articulations may reduce dislocation rates in patients who have a high pre-operative risk for dislocation while providing the same functional improvements and safety as small-diameter bearings.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. CONCLUSIONS/SIGNIFICANCE: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal "agility" with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not.