25 resultados para Extracellular Signal-Regulated Protein Kinase (ERK)
em Duke University
Resumo:
Stimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of beta-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation approximately 50% of wild type). This G protein-independent activation of mitogen-activated protein kinase is abolished by depletion of cellular beta-arrestin 2 but is unaffected by the PKC inhibitor Ro-31-8425. In parallel, stimulation of the wild-type angiotensin type 1A receptor with Ang II robustly stimulates ERK1/2 activation with approximately 60% of the response blocked by the PKC inhibitor (G protein dependent) and the rest of the response blocked by depletion of cellular beta-arrestin 2 by small interfering RNA (beta-arrestin dependent). These findings imply the existence of independent G protein- and beta-arrestin 2-mediated pathways leading to ERK1/2 activation and the existence of distinct "active" conformations of a seven-membrane-spanning receptor coupled to each.
Resumo:
Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.
Resumo:
TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.
Resumo:
Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.
Resumo:
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101 multiply sign in circle mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101 multiply sign in circle strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101 multiply sign in circle mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.
Resumo:
Natural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections.
Resumo:
Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.
Resumo:
Nicotinic acid is one of the most effective agents for both lowering triglycerides and raising HDL. However, the side effect of cutaneous flushing severely limits patient compliance. As nicotinic acid stimulates the GPCR GPR109A and Gi/Go proteins, here we dissected the roles of G proteins and the adaptor proteins, beta-arrestins, in nicotinic acid-induced signaling and physiological responses. In a human cell line-based signaling assay, nicotinic acid stimulation led to pertussis toxin-sensitive lowering of cAMP, recruitment of beta-arrestins to the cell membrane, an activating conformational change in beta-arrestin, and beta-arrestin-dependent signaling to ERK MAPK. In addition, we found that nicotinic acid promoted the binding of beta-arrestin1 to activated cytosolic phospholipase A2 as well as beta-arrestin1-dependent activation of cytosolic phospholipase A2 and release of arachidonate, the precursor of prostaglandin D2 and the vasodilator responsible for the flushing response. Moreover, beta-arrestin1-null mice displayed reduced cutaneous flushing in response to nicotinic acid, although the improvement in serum free fatty acid levels was similar to that observed in wild-type mice. These data suggest that the adverse side effect of cutaneous flushing is mediated by beta-arrestin1, but lowering of serum free fatty acid levels is not. Furthermore, G protein-biased ligands that activate GPR109A in a beta-arrestin-independent fashion may represent an improved therapeutic option for the treatment of dyslipidemia.
Resumo:
Phosphorylation of the beta(2) adrenoreceptor (beta(2)AR) by cAMP-activated protein kinase A (PKA) switches its predominant coupling from stimulatory guanine nucleotide regulatory protein (G(s)) to inhibitory guanine nucleotide regulatory protein (G(i)). beta-Arrestins recruit the cAMP-degrading PDE4 phosphodiesterases to the beta(2)AR, thus controlling PKA activity at the membrane. Here we investigate a role for PDE4 recruitment in regulating G protein switching by the beta(2)AR. In human embryonic kidney 293 cells overexpressing a recombinant beta(2)AR, stimulation with isoprenaline recruits beta-arrestins 1 and 2 as well as both PDE4D3 and PDE4D5 to the receptor and stimulates receptor phosphorylation by PKA. The PKA phosphorylation status of the beta(2)AR is enhanced markedly when cells are treated with the selective PDE4-inhibitor rolipram or when they are transfected with a catalytically inactive PDE4D mutant (PDE4D5-D556A) that competitively inhibits isoprenaline-stimulated recruitment of native PDE4 to the beta(2)AR. Rolipram and PDE4D5-D556A also enhance beta(2)AR-mediated activation of extracellular signal-regulated kinases ERK12. This is consistent with a switch in coupling of the receptor from G(s) to G(i), because the ERK12 activation is sensitive to both inhibitors of PKA (H89) and G(i) (pertussis toxin). In cardiac myocytes, the beta(2)AR also switches from G(s) to G(i) coupling. Treating primary cardiac myocytes with isoprenaline induces recruitment of PDE4D3 and PDE4D5 to membranes and activates ERK12. Rolipram robustly enhances this activation in a manner sensitive to both pertussis toxin and H89. Adenovirus-mediated expression of PDE4D5-D556A also potentiates ERK12 activation. Thus, receptor-stimulated beta-arrestin-mediated recruitment of PDE4 plays a central role in the regulation of G protein switching by the beta(2)AR in a physiological system, the cardiac myocyte.
Resumo:
Stimulation of Gi-coupled receptors leads to the activation of mitogen-activated protein kinases (MAP kinases). In several cell types, this appears to be dependent on the activation of p21ras (Ras). Which G-protein subunit(s) (G alpha or the G beta gamma complex) primarily is responsible for triggering this signaling pathway, however, is unclear. We have demonstrated previously that the carboxyl terminus of the beta-adrenergic receptor kinase, containing its G beta gamma-binding domain, is a cellular G beta gamma antagonist capable of specifically distinguishing G alpha- and G beta gamma-mediated processes. Using this G beta gamma inhibitor, we studied Ras and MAP kinase activation through endogenous Gi-coupled receptors in Rat-1 fibroblasts and through receptors expressed by transiently transfected COS-7 cells. We report here that both Ras and MAP kinase activation in response to lysophosphatidic acid is markedly attenuated in Rat-1 cells stably transfected with a plasmid encoding this G beta gamma antagonist. Likewise in COS-7 cells transfected with plasmids encoding Gi-coupled receptors (alpha 2-adrenergic and M2 muscarinic), the activation of Ras and MAP kinase was significantly reduced in the presence of the coexpressed G beta gamma antagonist. Ras-MAP kinase activation mediated through a Gq-coupled receptor (alpha 1-adrenergic) or the tyrosine kinase epidermal growth factor receptor was unaltered by this G beta gamma antagonist. These results identify G beta gamma as the primary mediator of Ras activation and subsequent signaling via MAP kinase in response to stimulation of Gi-coupled receptors.
Resumo:
G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D(2) dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3β and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA.
Resumo:
The protein kinase A (PKA) signal transduction pathway has been associated with pathogenesis in many fungal species. Geddes and colleagues [mBio 7(1):e01862-15, 2016, doi:10.1128/mBio.01862-15] used quantitative proteomics approaches to define proteins with altered abundance during protein kinase A (PKA) activation and repression in the opportunistic human fungal pathogen Cryptococcus neoformans. They observed an association between microbial PKA signaling and ubiquitin-proteasome regulation of protein homeostasis. Additionally, they correlated these processes with expression of polysaccharide capsule on the fungal cell surface, the main virulence-associated phenotype in this organism. Not only are their findings important for microbial pathogenesis, but they also support similar associations between human PKA signaling and ubiquitinated protein accumulation in neurodegenerative diseases.
Resumo:
Repetitive Ca2+ transients in dendritic spines induce various forms of synaptic plasticity by transmitting information encoded in their frequency and amplitude. CaMKII plays a critical role in decoding these Ca2+ signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ decoding in spines remain elusive. Here, I measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. This signal integration, at the time scale of seconds, critically depended on Thr286 phosphorylation. In the absence of Thr286 phosphorylation, only by increasing the frequency of repetitive Ca2+ elevations could high peak CaMKII activity or plasticity be induced. In addition, I measured the association between CaMKII and Ca2+/CaM during spine plasticity induction. Unlike CaMKII activity, association of Ca2+/CaM to CaMKII plateaued at the first Ca2+ elevation event. This result indicated that integration of Ca2+ signals was initiated by the binding of Ca2+/CaM and amplified by the subsequent increases in Thr286-phosphorylated form of CaMKII. Together, these findings demonstrate that CaMKII functions as a leaky integrator of repetitive Ca2+ signals during the induction of synaptic plasticity, and that Thr286 phosphorylation is critical for defining the frequencies of such integration.
Resumo:
Temporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation-evoked pain behavior in mice and that trigeminal ganglion pronociceptive changes are TRPV4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4(-/-) mice with TMJ inflammation, attenuation of bite force was significantly less than in wildtype (WT) mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ inflammation and mandibular bony changes were apparent after injections of complete Freund adjuvant but were remarkably independent of the Trpv4 genotype. It was intriguing that, as a result of TMJ inflammation, WT mice exhibited significant upregulation of TRPV4 and phosphorylated extracellular-signal-regulated kinase (ERK) in TMJ-innervating trigeminal sensory neurons, which were absent in Trpv4(-/-) mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed resistance to reduction of bite force similar to that of Trpv4(-/-) mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ inflammation and probably functions upstream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in vivo. TRPV4 therefore represents a novel pronociceptive target in TMJ inflammation and should be considered a target of interest in human TMJD.