4 resultados para Exponential Sum
em Duke University
Resumo:
Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. We show that the generalized Thomas-Kuhn sum rules, combined with linear absorption data and measured hyperpolarizability at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and three-level contributions that arise from the lowest two or three excited electronic state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. We show that some of these structures can possess very similar linear absorption spectra yet manifest dramatically different frequency dependent hyperpolarizabilities, because of three-level contributions that result from excited state-to excited state transition dipoles among charge polarized states. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very limited individual hyperpolarizability measurements to predict the entire frequency-dependent nonlinear optical response. Copyright © 2010 American Chemical Society.
Resumo:
First-order transitions of system where both lattice site occupancy and lattice spacing fluctuate, such as cluster crystals, cannot be efficiently studied by traditional simulation methods, which necessarily fix one of these two degrees of freedom. The difficulty, however, can be surmounted by the generalized [N]pT ensemble [J. Chem. Phys. 136, 214106 (2012)]. Here we show that histogram reweighting and the [N]pT ensemble can be used to study an isostructural transition between cluster crystals of different occupancy in the generalized exponential model of index 4 (GEM-4). Extending this scheme to finite-size scaling studies also allows us to accurately determine the critical point parameters and to verify that it belongs to the Ising universality class.