25 resultados para Excess cardiac mortality.
em Duke University
Resumo:
OBJECTIVE: This study compared self-reported subjective life expectancy (i.e., probability of living to age 75) for normal-weight, overweight, and obese weight groups to examine whether individuals are internalizing information about the health risks due to excessive weight. RESEARCH METHODS AND PROCEDURES: Using data from the Health and Retirement Study, a total of 9035 individuals 51 to 61 years old were analyzed by BMI category. The primary outcome measure was individuals' reports about their own expectations of survival to age 75. Absolute and relative risks of survival were compared with published estimates of survival to age 75. RESULTS: Consistently, higher levels of BMI were associated with lower self-estimated survival probabilities. Differences relative to normal weight ranged from 4.9% (p < 0.01) for male nonsmokers to 8.8% (p < 0.001) for female nonsmokers. However, these differences were substantially less than those obtained from published survival curve estimates, suggesting that obese individuals tended to underestimate mortality risks. DISCUSSION: Individuals appeared to underestimate the mortality risks of excessive weight; thus, knowledge campaigns about the risks of obesity should remain a top priority.
Resumo:
BACKGROUND: Cardiac surgery requiring cardiopulmonary bypass is associated with platelet activation. Because platelets are increasingly recognized as important effectors of ischemia and end-organ inflammatory injury, the authors explored whether postoperative nadir platelet counts are associated with acute kidney injury (AKI) and mortality after coronary artery bypass grafting (CABG) surgery. METHODS: The authors evaluated 4,217 adult patients who underwent CABG surgery. Postoperative nadir platelet counts were defined as the lowest in-hospital values and were used as a continuous predictor of postoperative AKI and mortality. Nadir values in the lowest 10th percentile were also used as a categorical predictor. Multivariable logistic regression and Cox proportional hazard models examined the association between postoperative platelet counts, postoperative AKI, and mortality. RESULTS: The median postoperative nadir platelet count was 121 × 10/l. The incidence of postoperative AKI was 54%, including 9.5% (215 patients) and 3.4% (76 patients) who experienced stages II and III AKI, respectively. For every 30 × 10/l decrease in platelet counts, the risk for postoperative AKI increased by 14% (adjusted odds ratio, 1.14; 95% CI, 1.09 to 1.20; P < 0.0001). Patients with platelet counts in the lowest 10th percentile were three times more likely to progress to a higher severity of postoperative AKI (adjusted proportional odds ratio, 3.04; 95% CI, 2.26 to 4.07; P < 0.0001) and had associated increased risk for mortality immediately after surgery (adjusted hazard ratio, 5.46; 95% CI, 3.79 to 7.89; P < 0.0001). CONCLUSION: The authors found a significant association between postoperative nadir platelet counts and AKI and short-term mortality after CABG surgery.
Resumo:
BACKGROUND: Utilization of cardiac services varies across regions and hospitals, yet little is known regarding variation in the intensity of outpatient cardiac care across cardiology physician practices or the association with clinical endpoints, an area of potential importance to promote efficient care. METHODS AND RESULTS: We included 7 160 732 Medicare beneficiaries who received services from 5635 cardiology practices in 2012. Beneficiaries were assigned to practices providing the plurality of office visits, and practices were ranked and assigned to quartiles using the ratio of observed to predicted annual payments per beneficiary for common cardiac services (outpatient intensity index). The median (interquartile range) outpatient intensity index was 1.00 (0.81-1.24). Mean payments for beneficiaries attributed to practices in the highest (Q4) and lowest (Q1) quartile of outpatient intensity were: all cardiac payments (Q4 $1272 vs Q1 $581; ratio, 2.2); cardiac catheterization (Q4 $215 vs Q1 $64; ratio, 3.4); myocardial perfusion imaging (Q4 $253 vs Q1 $83; ratio, 3.0); and electrophysiology device procedures (Q4 $353 vs Q1 $142; ratio, 2.5). The adjusted odds ratios (95% CI) for 1 incremental quartile of outpatient intensity for each outcome was: cardiac surgical/procedural hospitalization (1.09 [1.09, 1.10]); cardiac medical hospitalization (1.00 [0.99, 1.00]); noncardiac hospitalization (0.99 [0.99, 0.99]); and death at 1 year (1.00 [0.99, 1.00]). CONCLUSION: Substantial variation in the intensity of outpatient care exists at the cardiology practice level, and higher intensity is not associated with reduced mortality or hospitalizations. Outpatient cardiac care is a potentially important target for efforts to improve efficiency in the Medicare population.
Resumo:
BACKGROUND: Invasive aspergillosis (IA) is an important cause of morbidity and mortality in hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients. The purpose of this study was to evaluate factors associated with mortality in transplant patients with IA. METHODS: Transplant patients from 23 US centers were enrolled from March 2001 to October 2005 as part of the Transplant Associated Infection Surveillance Network. IA cases were identified prospectively in this cohort through March 2006, and data were collected. Factors associated with 12-week all-cause mortality were determined by logistic regression analysis and Cox proportional hazards regression. RESULTS: Six-hundred forty-two cases of proven or probable IA were evaluated, of which 317 (49.4%) died by the study endpoint. All-cause mortality was greater in HSCT patients (239 [57.5%] of 415) than in SOT patients (78 [34.4%] of 227; P<.001). Independent poor prognostic factors in HSCT patients were neutropenia, renal insufficiency, hepatic insufficiency, early-onset IA, proven IA, and methylprednisolone use. In contrast, white race was associated with decreased risk of death. Among SOT patients, hepatic insufficiency, malnutrition, and central nervous system disease were poor prognostic indicators, whereas prednisone use was associated with decreased risk of death. Among HSCT or SOT patients who received antifungal therapy, use of an amphotericin B preparation as part of initial therapy was associated with increased risk of death. CONCLUSIONS: There are multiple variables associated with survival in transplant patients with IA. Understanding these prognostic factors may assist in the development of treatment algorithms and clinical trials.
Resumo:
Cardiac trabeculation is a crucial morphogenetic process by which clusters of ventricular cardiomyocytes extrude and expand into the cardiac jelly to form sheet-like projections. Although it has been suggested that cardiac trabeculae enhance cardiac contractility and intra-ventricular conduction, their exact function in heart development has not been directly addressed. We found that in zebrafish erbb2 mutants, which we show completely lack cardiac trabeculae, cardiac function is significantly compromised, with mutant hearts exhibiting decreased fractional shortening and an immature conduction pattern. To begin to elucidate the cellular mechanisms of ErbB2 function in cardiac trabeculation, we analyzed erbb2 mutant hearts more closely and found that loss of ErbB2 activity resulted in a complete absence of cardiomyocyte proliferation during trabeculation stages. In addition, based on data obtained from proliferation, lineage tracing and transplantation studies, we propose that cardiac trabeculation is initiated by directional cardiomyocyte migration rather than oriented cell division, and that ErbB2 cell-autonomously regulates this process.
Resumo:
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.
Resumo:
BACKGROUND: Genetic manipulation to reverse molecular abnormalities associated with dysfunctional myocardium may provide novel treatment. This study aimed to determine the feasibility and functional consequences of in vivo beta-adrenergic receptor kinase (betaARK1) inhibition in a model of chronic left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Rabbits underwent ligation of the left circumflex (LCx) marginal artery and implantation of sonomicrometric crystals. Baseline cardiac physiology was studied 3 weeks after MI; 5x10(11) viral particles of adenovirus was percutaneously delivered through the LCx. Animals received transgenes encoding a peptide inhibitor of betaARK1 (Adeno-betaARKct) or an empty virus (EV) as control. One week after gene delivery, global LV and regional systolic function were measured again to assess gene treatment. Adeno-betaARKct delivery to the failing heart through the LCx resulted in chamber-specific expression of the betaARKct. Baseline in vivo LV systolic performance was improved in Adeno-betaARKct-treated animals compared with their individual pre-gene delivery values and compared with EV-treated rabbits. Total beta-AR density and betaARK1 levels were unchanged between treatment groups; however, beta-AR-stimulated adenylyl cyclase activity in the LV was significantly higher in Adeno-betaARKct-treated rabbits compared with EV-treated animals. CONCLUSIONS: In vivo delivery of Adeno-betaARKct is feasible in the infarcted/failing heart by coronary catheterization; expression of betaARKct results in marked reversal of ventricular dysfunction. Thus, inhibition of betaARK1 provides a novel treatment strategy for improving the cardiac performance of the post-MI heart.
Resumo:
BACKGROUND: Stimulation of beta(1)- and beta(2)-adrenergic receptors (ARs) in the heart results in positive inotropy. In contrast, it has been reported that the beta(3)AR is also expressed in the human heart and that its stimulation leads to negative inotropic effects. METHODS AND RESULTS: To better understand the role of beta(3)ARs in cardiac function, we generated transgenic mice with cardiac-specific overexpression of 330 fmol/mg protein of the human beta(3)AR (TGbeta(3) mice). Hemodynamic characterization was performed by cardiac catheterization in closed-chest anesthetized mice, by pressure-volume-loop analysis, and by echocardiography in conscious mice. After propranolol blockade of endogenous beta(1)- and beta(2)ARs, isoproterenol resulted in an increase in contractility in the TGbeta(3) mice (30%), with no effect in wild-type mice. Similarly, stimulation with the selective human beta(3)AR agonist L-755,507 significantly increased contractility in the TGbeta(3) mice (160%), with no effect in wild-type mice, as determined by hemodynamic measurements and by end-systolic pressure-volume relations. The underlying mechanism of the positive inotropy incurred with L-755,507 in the TGbeta(3) mice was investigated in terms of beta(3)AR-G-protein coupling and adenylyl cyclase activation. Stimulation of cardiac membranes from TGbeta(3) mice with L-755,507 resulted in a pertussis toxin-insensitive 1.33-fold increase in [(35)S]GTPgammaS loading and a 1.6-fold increase in adenylyl cyclase activity. CONCLUSIONS: Cardiac overexpression of human beta(3)ARs results in positive inotropy only on stimulation with a beta(3)AR agonist. Overexpressed beta(3)ARs couple to G(s) and activate adenylyl cyclase on agonist stimulation.
Resumo:
BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.
Resumo:
-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the present study, we investigated effects of beta2AR stimulation on contraction, [Ca2+]i transient, and L-type Ca2+ currents (ICa) in single ventricular myocytes isolated from transgenic mice overexpressing human beta2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous beta2AR activation. In contrast, beta2AR stimulation by zinterol or isoproterenol plus a selective beta1-adrenergic receptor (beta1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, beta2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the ICa, [Ca2+]i, and contractile responses to beta2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac beta2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced beta2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [gamma-32P]GTP azidoanilide into alpha subunits of Gi2 and Gi3 after beta2AR stimulation by zinterol or isoproterenol plus the beta1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective beta2AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) beta2ARs in murine cardiac myocytes couple to concurrent Gs and Gi signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to beta2AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of beta2AR-coupled Gi proteins; and (3) spontaneous beta2AR activation may differ from agonist-stimulated beta2AR signaling.
Resumo:
Exogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testing the hypothesis that genetic manipulation of the myocardial beta-adrenergic receptor (beta-AR) system, which is impaired in HF, can enhance cardiac function. We have delivered adenoviral transgenes, including the human beta2-AR (Adeno-beta2AR), to the myocardium of rabbits using an intracoronary approach. Catheter-mediated Adeno-beta2AR delivery produced diffuse multichamber myocardial expression, peaking 1 week after gene transfer. A total of 5 x 10(11) viral particles of Adeno-beta2AR reproducibly produced 5- to 10-fold beta-AR overexpression in the heart, which, at 7 and 21 days after delivery, resulted in increased in vivo hemodynamic function compared with control rabbits that received an empty adenovirus. Several physiological parameters, including dP/dtmax as a measure of contractility, were significantly enhanced basally and showed increased responsiveness to the beta-agonist isoproterenol. Our results demonstrate that global myocardial in vivo gene delivery is possible and that genetic manipulation of beta-AR density can result in enhanced cardiac performance. Thus, replacement of lost receptors seen in HF may represent novel inotropic therapy.
Resumo:
The medical treatment of chronic heart failure has undergone a dramatic transition in the past decade. Short-term approaches for altering hemodynamics have given way to long-term, reparative strategies, including beta-adrenergic receptor (betaAR) blockade. This was once viewed as counterintuitive, because acute administration causes myocardial depression. Cardiac myocytes from failing hearts show changes in betaAR signaling and excitation-contraction coupling that can impair cardiac contractility, but the role of these abnormalities in the progression of heart failure is controversial. We therefore tested the impact of different manipulations that increase contractility on the progression of cardiac dysfunction in a mouse model of hypertrophic cardiomyopathy. High-level overexpression of the beta(2)AR caused rapidly progressive cardiac failure in this model. In contrast, phospholamban ablation prevented systolic dysfunction and exercise intolerance, but not hypertrophy, in hypertrophic cardiomyopathy mice. Cardiac expression of a peptide inhibitor of the betaAR kinase 1 not only prevented systolic dysfunction and exercise intolerance but also decreased cardiac remodeling and hypertrophic gene expression. These three manipulations of cardiac contractility had distinct effects on disease progression, suggesting that selective modulation of particular aspects of betaAR signaling or excitation-contraction coupling can provide therapeutic benefit.
Resumo:
Chronic human heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased levels of betaAR kinase 1 (betaARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of betaARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of betaARK1 (betaARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca(2+)-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 +/- 1 weeks). In contrast, CSQ/betaARKct mice exhibited a significant increase in mean survival age (15 +/- 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/betaARKct, left ventricular end diastolic dimension 5.60 +/- 0.17 mm vs. 4.19 +/- 0.09 mm, P < 0.005; % fractional shortening, 15 +/- 2 vs. 36 +/- 2, P < 0.005). The enhancement of the survival rate in CSQ/betaARKct mice was substantially potentiated by chronic treatment with the betaAR antagonist metoprolol (CSQ/betaARKct nontreated vs. CSQ/betaARKct metoprolol treated, 15 +/- 1 weeks vs. 25 +/- 2 weeks, P < 0.0001). Thus, overexpression of the betaARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with beta-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of betaARK1 inhibition.
Resumo:
Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.