5 resultados para Evaluation of proposals for new courses

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic challenges within child welfare have prompted many states to explore new strategies aimed at protecting children while meeting the needs of families, but doing so within the confines of shrinking budgets. Differential Response has emerged as a promising practice for low or moderate risk cases of child maltreatment. This mixed methods evaluation explored various aspects of North Carolina's differential response system, known as the Multiple Response System (MRS), including: child safety, timeliness of response and case decision, frontloading of services, case distribution, implementation of Child and Family Teams, collaboration with community-based service providers and Shared Parenting. Utilizing Child Protective Services (CPS) administrative data, researchers found that compared to matched control counties, MRS: had a positive impact on child safety evidenced by a decline in the rates of substantiations and re-assessments; temporarily disrupted timeliness of response in pilot counties but had no effect on time to case decision; and increased the number of upfront services provided to families during assessment. Qualitative data collected through focus groups with providers and phone interviews with families provided important information on key MRS strategies, highlighting aspects that families and social workers like as well as identifying areas for improvement. This information is useful for continuous quality improvement efforts, particularly related to the development of training and technical assistance programs at the state and local level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff RFA-treated myocardium. OBJECTIVE: To determine whether intraprocedure ARFI images can identify RFA-treated myocardium in vivo. METHODS: In 8 canines, an electroanatomical mapping-guided intracardiac echo catheter was used to acquire 2-dimensional ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the intracardiac echo transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, noncontiguous lesion, or contiguous lesion. For comparison, 3 separate reviewers confirmed RFA lesion presence and contiguity on the basis of functional conduction block at the imaging plane location on electroanatomical activation maps. RESULTS: Ten percent of ARFI images were discarded because of motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesions had 75.3% specificity and 47.1% sensitivity. CONCLUSIONS: Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Elsevier Inc. All rights reserved.Background 12-lead ECG is a critical component of initial evaluation of cardiac ischemia, but has traditionally been limited to large, dedicated equipment in medical care environments. Smartphones provide a potential alternative platform for the extension of ECG to new care settings and to improve timeliness of care. Objective To gain experience with smartphone electrocardiography prior to designing a larger multicenter study evaluating standard 12-lead ECG compared to smartphone ECG. Methods 6 patients for whom the hospital STEMI protocol was activated were evaluated with traditional 12-lead ECG followed immediately by a smartphone ECG using right (VnR) and left (VnL) limb leads for precordial grounding. The AliveCor™ Heart Monitor was utilized for this study. All tracings were taken prior to catheterization or immediately after revascularization while still in the catheterization laboratory. Results The smartphone ECG had excellent correlation with the gold standard 12-lead ECG in all patients. Four out of six tracings were judged to meet STEMI criteria on both modalities as determined by three experienced cardiologists, and in the remaining two, consensus indicated a non-STEMI ECG diagnosis. No significant difference was noted between VnR and VnL. Conclusions Smartphone based electrocardiography is a promising, developing technology intended to increase availability and speed of electrocardiographic evaluation. This study confirmed the potential of a smartphone ECG for evaluation of acute ischemia and the feasibility of studying this technology further to define the diagnostic accuracy, limitations and appropriate use of this new technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human genetics has been experiencing a wave of genetic discoveries thanks to the development of several technologies, such as genome-wide association studies (GWAS), whole-exome sequencing, and whole genome sequencing. Despite the massive genetic discoveries of new variants associated with human diseases, several key challenges emerge following the genetic discovery. GWAS is known to be good at identifying the locus associated with the patient phenotype. However, the actually causal variants responsible for the phenotype are often elusive. Another challenge in human genetics is that even the causal mutations are already known, the underlying biological effect might remain largely ambiguous. Functional evaluation plays a key role to solve these key challenges in human genetics both to identify causal variants responsible for the phenotype, and to further develop the biological insights from the disease-causing mutations.

We adopted various methods to characterize the effects of variants identified in human genetic studies, including patient genetic and phenotypic data, RNA chemistry, molecular biology, virology, and multi-electrode array and primary neuronal culture systems. Chapter 1 is a broader introduction for the motivation and challenges for functional evaluation in human genetic studies, and the background of several genetics discoveries, such as hepatitis C treatment response, in which we performed functional characterization.

Chapter 2 focuses on the characterization of causal variants following the GWAS study for hepatitis C treatment response. We characterized a non-coding SNP (rs4803217) of IL28B (IFNL3) in high linkage disequilibrium (LD) with the discovery SNP identified in the GWAS. In this chapter, we used inter-disciplinary approaches to characterize rs4803217 on RNA structure, disease association, and protein translation.

Chapter 3 describes another avenue of functional characterization following GWAS focusing on the novel transcripts and proteins identified near the IL28B (IFNL3) locus. It has been recently speculated that this novel protein, which was named IFNL4, may affect the HCV treatment response and clearance. In this chapter, we used molecular biology, virology, and patient genetic and phenotypic data to further characterize and understand the biology of IFNL4. The efforts in chapter 2 and 3 provided new insights to the candidate causal variant(s) responsible for the GWAS for HCV treatment response, however, more evidence is still required to make claims for the exact causal roles of these variants for the GWAS association.

Chapter 4 aims to characterize a mutation already known to cause a disease (seizure) in a mouse model. We demonstrate the potential use of multi-electrode array (MEA) system for the functional characterization and drug testing on mutations found in neurological diseases, such as seizure. Functional characterization in neurological diseases is relatively challenging and available systematic tools are relatively limited. This chapter shows an exploratory research and example to establish a system for the broader use for functional characterization and translational opportunities for mutations found in neurological diseases.

Overall, this dissertation spans a range of challenges of functional evaluations in human genetics. It is expected that the functional characterization to understand human mutations will become more central in human genetics, because there are still many biological questions remaining to be answered after the explosion of human genetic discoveries. The recent advance in several technologies, including genome editing and pluripotent stem cells, is also expected to make new tools available for functional studies in human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary heart disease is the major cause of morbidity and mortality throughout the world, and is responsible for approximately one of every six deaths in the US. Angina pectoris is a clinical syndrome characterized by discomfort, typically in the chest, neck, chin, or left arm, induced by physical exertion, emotional stress, or cold, and relieved by rest or nitroglycerin. The main goals of treatment of stable angina pectoris are to improve quality of life by reducing the severity and/or frequency of symptoms, to increase functional capacity, and to improve prognosis. Ranolazine is a recently developed antianginal with unique methods of action. In this paper, we review the pharmacology of ranolazine, clinical trials supporting its approval for clinical use, and studies of its quality of life benefits. We conclude that ranolazine has been shown to be a reasonable and safe option for patients who have refractory ischemic symptoms despite the use of standard medications (for example, nitrates, beta-adrenergic receptor antagonists, and calcium channel antagonists) for treatment of anginal symptoms, and also provides a modestly improved quality of life.