9 resultados para Error correction model

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user. © 2010 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.

This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.

In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.

The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.

The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading

due to misclassification of unemployment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomic ions trapped in micro-fabricated surface traps can be utilized as a physical platform with which to build a quantum computer. They possess many of the desirable qualities of such a device, including high fidelity state preparation and readout, universal logic gates, long coherence times, and can be readily entangled with each other through photonic interconnects. The use of optical cavities integrated with trapped ion qubits as a photonic interface presents the possibility for order of magnitude improvements in performance in several key areas of their use in quantum computation. The first part of this thesis describes the design and fabrication of a novel surface trap for integration with an optical cavity. The trap is custom made on a highly reflective mirror surface and includes the capability of moving the ion trap location along all three trap axes with nanometer scale precision. The second part of this thesis demonstrates the suitability of small micro-cavities formed from laser ablated fused silica substrates with radii of curvature in the 300-500 micron range for use with the mirror trap as part of an integrated ion trap cavity system. Quantum computing applications for such a system include dramatic improvements in the photonic entanglement rate up to 10 kHz, the qubit measurement time down to 1 microsecond, and the measurement error rates down to the 10e-5 range. The final part of this thesis details a performance simulator for exploring the physical resource requirements and performance demands to scale such a quantum computer to sizes capable of performing quantum algorithms beyond the limits of classical computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model of telescoping is proposed that assumes no systematic errors in dating. Rather, the overestimation of recent occurrences of events is based on the combination of three factors: (1) Retention is greater for recent events; (2) errors in dating, though unbiased, increase linearly with the time since the dated event; and (3) intrusions often occur from events outside the period being asked about, but such intrusions do not come from events that have not yet occurred. In Experiment 1, we found that recall for colloquia fell markedly over a 2-year interval, the magnitude of errors in psychologists' dating of the colloquia increased at a rate of .4 days per day of delay, and the direction of the dating error was toward the middle of the interval. In Experiment 2, the model used the retention function and dating errors from the first study to predict the distribution of the actual dates of colloquia recalled as being within a 5-month period. In Experiment 3, the findings of the first study were replicated with colloquia given by, instead of for, the subjects.