4 resultados para Environmental sample
em Duke University
Resumo:
BACKGROUND: This study examined whether objective measures of food, physical activity and built environment exposures, in home and non-home settings, contribute to children's body weight. Further, comparing GPS and GIS measures of environmental exposures along routes to and from school, we tested for evidence of selective daily mobility bias when using GPS data. METHODS: This study is a cross-sectional analysis, using objective assessments of body weight in relation to multiple environmental exposures. Data presented are from a sample of 94 school-aged children, aged 5-11 years. Children's heights and weights were measured by trained researchers, and used to calculate BMI z-scores. Participants wore a GPS device for one full week. Environmental exposures were estimated within home and school neighbourhoods, and along GIS (modelled) and GPS (actual) routes from home to school. We directly compared associations between BMI and GIS-modelled versus GPS-derived environmental exposures. The study was conducted in Mebane and Mount Airy, North Carolina, USA, in 2011. RESULTS: In adjusted regression models, greater school walkability was associated with significantly lower mean BMI. Greater home walkability was associated with increased BMI, as was greater school access to green space. Adjusted associations between BMI and route exposure characteristics were null. The use of GPS-actual route exposures did not appear to confound associations between environmental exposures and BMI in this sample. CONCLUSIONS: This study found few associations between environmental exposures in home, school and commuting domains and body weight in children. However, walkability of the school neighbourhood may be important. Of the other significant associations observed, some were in unexpected directions. Importantly, we found no evidence of selective daily mobility bias in this sample, although our study design is in need of replication in a free-living adult sample.
Resumo:
Social attitudes, attitudes toward financial risk and attitudes toward deferred gratification are thought to influence many important economic decisions over the life-course. In economic theory, these attitudes are key components in diverse models of behavior, including collective action, saving and investment decisions and occupational choice. The relevance of these attitudes have been confirmed empirically. Yet, the factors that influence them are not well understood. This research evaluates how these attitudes are affected by large disruptive events, namely, a natural disaster and a civil conflict, and also by an individual-specific life event, namely, having children.
By implementing rigorous empirical strategies drawing on rich longitudinal datasets, this research project advances our understanding of how life experiences shape these attitudes. Moreover, compelling evidence is provided that the observed changes in attitudes are likely to reflect changes in preferences given that they are not driven just by changes in financial circumstances. Therefore the findings of this research project also contribute to the discussion of whether preferences are really fixed, a usual assumption in economics.
In the first chapter, I study how altruistic and trusting attitudes are affected by exposure to the 2004 Indian Ocean tsunami as long as ten years after the disaster occurred. Establishing a causal relationship between natural disasters and attitudes presents several challenges as endogenous exposure and sample selection can confound the analysis. I take on these challenges by exploiting plausibly exogenous variation in exposure to the tsunami and by relying on a longitudinal dataset representative of the pre-tsunami population in two districts of Aceh, Indonesia. The sample is drawn from the Study of the Tsunami Aftermath and Recovery (STAR), a survey with data collected both before and after the disaster and especially designed to identify the impact of the tsunami. The altruistic and trusting attitudes of the respondents are measured by their behavior in the dictator and trust games. I find that witnessing closely the damage caused by the tsunami but without suffering severe economic damage oneself increases altruistic and trusting behavior, particularly towards individuals from tsunami affected communities. Having suffered severe economic damage has no impact on altruistic behavior but may have increased trusting behavior. These effects do not seem to be caused by the consequences of the tsunami on people’s financial situation. Instead they are consistent with how experiences of loss and solidarity may have shaped social attitudes by affecting empathy and perceptions of who is deserving of aid and trust.
In the second chapter, co-authored with Ryan Brown, Duncan Thomas and Andrea Velasquez, we investigate how attitudes toward financial risk are affected by elevated levels of insecurity and uncertainty brought on by the Mexican Drug War. To conduct our analysis, we pair the Mexican Family Life Survey (MxFLS), a rich longitudinal dataset ideally suited for our purposes, with a dataset on homicide rates at the month and municipality-level. The homicide rates capture well the overall crime environment created by the drug war. The MxFLS elicits risk attitudes by asking respondents to choose between hypothetical gambles with different payoffs. Our strategy to identify a causal effect has two key components. First, we implement an individual fixed effects strategy which allows us to control for all time-invariant heterogeneity. The remaining time variant heterogeneity is unlikely to be correlated with changes in the local crime environment given the well-documented political origins of the Mexican Drug War. We also show supporting evidence in this regard. The second component of our identification strategy is to use an intent-to-treat approach to shield our estimates from endogenous migration. Our findings indicate that exposure to greater local-area violent crime results in increased risk aversion. This effect is not driven by changes in financial circumstances, but may be explained instead by heightened fear of victimization. Nonetheless, we find that having greater economic resources mitigate the impact. This may be due to individuals with greater economic resources being able to avoid crime by affording better transportation or security at work.
The third chapter, co-authored with Duncan Thomas, evaluates whether attitudes toward deferred gratification change after having children. For this study we also exploit the MxFLS, which elicits attitudes toward deferred gratification (commonly known as time discounting) by asking individuals to choose between hypothetical payments at different points in time. We implement a difference-in-difference estimator to control for all time-invariant heterogeneity and show that our results are robust to the inclusion of time varying characteristics likely correlated with child birth. We find that becoming a mother increases time discounting especially in the first two years after childbirth and in particular for those women without a spouse at home. Having additional children does not have an effect and the effect for men seems to go in the opposite direction. These heterogeneous effects suggest that child rearing may affect time discounting due to generated stress or not fully anticipated spending needs.
Resumo:
The skin is home to trillions of microbes, many of which are recently implicated in immune system regulation and various health conditions (33). The skin is continuously exposed to the outside environment, inviting microbial transfer between human skin and the people, animals, and surfaces with which an individual comes into contact. Thus, the aim of this study is to assess how different environmental exposures influence skin microbe communities, as this can strengthen our understanding of how microbial variation relates to health outcomes. This study investigated the skin microbial communities of humans and domesticated cattle living in rural Madagascar. The V3 region of the 16S rRNA gene was sequenced from samples of zebu (the domesticated cattle of Madagascar), zebu owners, and non-zebu owners. Overall, human armpits were the least diverse sample site, while ankles were the most diverse. The diversity of zebu samples was significantly different from armpits, irrespective of zebu ownership (one-way ANOVA and Tukey’s HSD, p<0.05). However, zebu owner samples (from the armpit, ankle forearm, and hand) were more similar to other zebu owner samples than they were to zebu, yet no more similar to other zebu owner samples than they were to non-zebu owner samples (unweighted UniFrac distances, p<0.05). These data suggest a lack of a microbial signature shared by zebu owners and zebu, though further taxonomic analysis is required to explain the role of additional environmental variables in dictating the microbial communities of various samples sites. Understanding the magnitude and directionality of microbial sharing has implications for a breadth of microbe-related health outcomes, with the potential to explain mosquito host preference and mitigate the threats of vector-borne diseases.
Resumo:
Forests change with changes in their environment based on the physiological responses of individual trees. These short-term reactions have cumulative impacts on long-term demographic performance. For a tree in a forest community, success depends on biomass growth to capture above- and belowground resources and reproductive output to establish future generations. Here we examine aspects of how forests respond to changes in moisture and light availability and how these responses are related to tree demography and physiology.
First we address the long-term pattern of tree decline before death and its connection with drought. Increasing drought stress and chronic morbidity could have pervasive impacts on forest composition in many regions. We use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 years. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with species drought tolerance.
Next, we investigate differences among tree species in reproductive output relative to biomass growth with changes in light availability. Previous studies reach conflicting conclusions about the constraints on reproductive allocation relative to growth and how they vary through time, across species, and between environments. We test the hypothesis that canopy exposure to light, a critical resource, limits reproductive allocation by comparing long-term relationships between reproduction and growth for trees from 21 species in forests throughout the southeastern U.S. We found that species had divergent responses to light availability, with shade-intolerant species experiencing an alleviation of trade-offs between growth and reproduction at high light. Shade-tolerant species showed no changes in reproductive output across light environments.
Given that the above patterns depend on the maintenance of transpiration, we next developed an approach for predicting whole-tree water use from sap flux observations. Accurately scaling these observations to tree- or stand-levels requires accounting for variation in sap flux between wood types and with depth into the tree. We compared different models with sap flux data to test the hypotheses that radial sap flux profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in new settings. We outline a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.
Finally, we estimated tree water balances during drought with a statistical time-series analysis. Moisture limitation in forest stands comes predominantly from water use by the trees themselves, a drought-stand feedback. We show that drought impacts on tree fitness and forest composition can be predicted by tracking the moisture reservoir available to each tree in a mass balance. We apply this model to multiple seasonal droughts in a temperate forest with measurements of tree water use to demonstrate how species and size differences modulate moisture availability across landscapes. As trees deplete their soil moisture reservoir during droughts, a transpiration deficit develops, leading to reduced biomass growth and reproductive output.
This dissertation draws connections between the physiological condition of individual trees and their behavior in crowded, diverse, and continually-changing forest stands. The analyses take advantage of growing data sets on both the physiology and demography of trees as well as novel statistical techniques that allow us to link these observations to realistic quantitative models. The results can be used to scale up tree measurements to entire stands and address questions about the future composition of forests and the land’s balance of water and carbon.