2 resultados para Entanglement Capability

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Blochmannia are obligately intracellular bacterial mutualists of ants of the tribe Camponotini. Blochmannia perform key nutritional functions for the host, including synthesis of several essential amino acids. We used Illumina technology to sequence the genome of Blochmannia associated with Camponotus vafer. RESULTS: Although Blochmannia vafer retains many nutritional functions, it is missing glutamine synthetase (glnA), a component of the nitrogen recycling pathway encoded by the previously sequenced B. floridanus and B. pennsylvanicus. With the exception of Ureaplasma, B. vafer is the only sequenced bacterium to date that encodes urease but lacks the ability to assimilate ammonia into glutamine or glutamate. Loss of glnA occurred in a deletion hotspot near the putative replication origin. Overall, compared to the likely gene set of their common ancestor, 31 genes are missing or eroded in B. vafer, compared to 28 in B. floridanus and four in B. pennsylvanicus. Three genes (queA, visC and yggS) show convergent loss or erosion, suggesting relaxed selection for their functions. Eight B. vafer genes contain frameshifts in homopolymeric tracts that may be corrected by transcriptional slippage. Two of these encode DNA replication proteins: dnaX, which we infer is also frameshifted in B. floridanus, and dnaG. CONCLUSIONS: Comparing the B. vafer genome with B. pennsylvanicus and B. floridanus refines the core genes shared within the mutualist group, thereby clarifying functions required across ant host species. This third genome also allows us to track gene loss and erosion in a phylogenetic context to more fully understand processes of genome reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic ions trapped in micro-fabricated surface traps can be utilized as a physical platform with which to build a quantum computer. They possess many of the desirable qualities of such a device, including high fidelity state preparation and readout, universal logic gates, long coherence times, and can be readily entangled with each other through photonic interconnects. The use of optical cavities integrated with trapped ion qubits as a photonic interface presents the possibility for order of magnitude improvements in performance in several key areas of their use in quantum computation. The first part of this thesis describes the design and fabrication of a novel surface trap for integration with an optical cavity. The trap is custom made on a highly reflective mirror surface and includes the capability of moving the ion trap location along all three trap axes with nanometer scale precision. The second part of this thesis demonstrates the suitability of small micro-cavities formed from laser ablated fused silica substrates with radii of curvature in the 300-500 micron range for use with the mirror trap as part of an integrated ion trap cavity system. Quantum computing applications for such a system include dramatic improvements in the photonic entanglement rate up to 10 kHz, the qubit measurement time down to 1 microsecond, and the measurement error rates down to the 10e-5 range. The final part of this thesis details a performance simulator for exploring the physical resource requirements and performance demands to scale such a quantum computer to sizes capable of performing quantum algorithms beyond the limits of classical computation.