8 resultados para Emotional Labor
em Duke University
Resumo:
BACKGROUND: Ritonavir inhibition of cytochrome P450 3A4 decreases the elimination clearance of fentanyl by 67%. We used a pharmacokinetic model developed from published data to simulate the effect of sample patient-controlled epidural labor analgesic regimens on plasma fentanyl concentrations in the absence and presence of ritonavir-induced cytochrome P450 3A4 inhibition. METHODS: Fentanyl absorption from the epidural space was modeled using tanks-in-series delay elements. Systemic fentanyl disposition was described using a three-compartment pharmacokinetic model. Parameters for epidural drug absorption were estimated by fitting the model to reported plasma fentanyl concentrations measured after epidural administration. The validity of the model was assessed by comparing predicted plasma concentrations after epidural administration to published data. The effect of ritonavir was modeled as a 67% decrease in fentanyl elimination clearance. Plasma fentanyl concentrations were simulated for six sample patient-controlled epidural labor analgesic regimens over 24 h using ritonavir and control models. Simulated data were analyzed to determine if plasma fentanyl concentrations producing a 50% decrease in minute ventilation (6.1 ng/mL) were achieved. RESULTS: Simulated plasma fentanyl concentrations in the ritonavir group were higher than those in the control group for all sample labor analgesic regimens. Maximum plasma fentanyl concentrations were 1.8 ng/mL and 3.4 ng/mL for the normal and ritonavir simulations, respectively, and did not reach concentrations associated with 50% decrease in minute ventilation. CONCLUSION: Our model predicts that even with maximal clinical dosing regimens of epidural fentanyl over 24 h, ritonavir-induced cytochrome P450 3A4 inhibition is unlikely to produce plasma fentanyl concentrations associated with a decrease in minute ventilation.
Resumo:
To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.
Resumo:
The rivalry between the men's basketball teams of Duke University and the University of North Carolina-Chapel Hill (UNC) is one of the most storied traditions in college sports. A subculture of students at each university form social bonds with fellow fans, develop expertise in college basketball rules, team statistics, and individual players, and self-identify as a member of a fan group. The present study capitalized on the high personal investment of these fans and the strong affective tenor of a Duke-UNC basketball game to examine the neural correlates of emotional memory retrieval for a complex sporting event. Male fans watched a competitive, archived game in a social setting. During a subsequent functional magnetic resonance imaging session, participants viewed video clips depicting individual plays of the game that ended with the ball being released toward the basket. For each play, participants recalled whether or not the shot went into the basket. Hemodynamic signal changes time locked to correct memory decisions were analyzed as a function of emotional intensity and valence, according to the fan's perspective. Results showed intensity-modulated retrieval activity in midline cortical structures, sensorimotor cortex, the striatum, and the medial temporal lobe, including the amygdala. Positively valent memories specifically recruited processing in dorsal frontoparietal regions, and additional activity in the insula and medial temporal lobe for positively valent shots recalled with high confidence. This novel paradigm reveals how brain regions implicated in emotion, memory retrieval, visuomotor imagery, and social cognition contribute to the recollection of specific plays in the mind of a sports fan.
Resumo:
Cognitive-emotional distinctiveness (CED), the extent to which an individual separates emotions from an event in the cognitive representation of the event, was explored in four studies. CED was measured using a modified multidimensional scaling procedure. The first study found that lower levels of CED in memories of the September 11 terrorist attacks predicted greater frequency of intrusive thoughts about the attacks. The second study revealed that CED levels are higher in negative events, in comparison to positive events and that low CED levels in emotionally intense negative events are associated with a pattern of greater event-related distress. The third study replicated the findings from the previous study when examining CED levels in participants' memories of the 2004 Presidential election. The fourth study revealed that low CED in emotionally intense negative events is associated with worse mental health. We argue that CED is an adaptive and healthy coping feature of stressful memories.
Resumo:
We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging (fMRI). Participants pressed a button when a memory was accessed, maintained and elaborated the memory, and then gave subjective ratings of emotion and reliving. A novel fMRI approach based on timing differences capitalized on the protracted reconstructive process of autobiographical memory to segregate brain areas contributing to initial access and later elaboration and maintenance of episodic memories. The initial period engaged hippocampal, retrosplenial, and medial and right prefrontal activity, whereas the later period recruited visual, precuneus, and left prefrontal activity. Emotional intensity ratings were correlated with activity in several regions, including the amygdala and the hippocampus during the initial period. Reliving ratings were correlated with activity in visual cortex and ventromedial and inferior prefrontal regions during the later period. Frontopolar cortex was the only brain region sensitive to emotional intensity across both periods. Results were confirmed by time-locked averages of the fMRI signal. The findings indicate dynamic recruitment of emotion-, memory-, and sensory-related brain regions during remembering and their dissociable contributions to phenomenological features of the memories.
Resumo:
College students generated autobiographical memories from distinct emotional categories that varied in valence (positive vs. negative) and intensity (high vs. low). They then rated various perceptual, cognitive, and emotional properties for each memory. The distribution of these emotional memories favored a vector model over a circumplex model. For memories of all specific emotions, intensity accounted for significantly more variance in autobiographical memory characteristics than did valence or age of the memory. In two additional experiments, we examined multiple memories of emotions of high intensity and positive or negative valence and of positive valence and high or low intensity. Intensity was a more consistent predictor of autobiographical memory properties than was valence or the age of the memory in these experiments as well. The general effects of emotion on autobiographical memory properties are due primarily to intensity differences in emotional experience, not to benefits or detriments associated with a specific valence.
Resumo:
Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.