6 resultados para Emissions trading
em Duke University
Resumo:
© 2015 Elsevier Inc.Links between emission trading programs are not immutable, as highlighted by New Jersey's exit from the Regional Greenhouse Gas Initiative in 2011. This raises the question of what to do with existing permits that are banked for future use-choices that have consequences for market behavior in advance of, or upon speculation about, delinking. We consider two delinking policies. One differentiates banked permits by origin, the other treats banked permits the same. We describe the price behavior and relative cost-effectiveness of each policy. Treating permits differently generally leads to higher costs, and may lead to price divergence, even with only speculation about delinking.
Resumo:
Carbon markets are substantial and they are expanding. There are many lessons from experiences over the past eight years: fewer free allowances, better management of market-sensitive information, and a recognition that trading systems require adjustments that have consequences for market participants and market confidence. Moreover, the emerging international architecture features separate emissions trading systems serving distinct jurisdictions. These programs are complemented by a variety of other types of policies alongside the carbon markets. This sits in sharp contrast to the integrated global trading architecture envisioned 15 years ago by the designers of the Kyoto Protocol and raises a suite of new questions. In this new architecture, jurisdictions with emissions trading have to decide how, whether, and when to link with one another, and policymakers overseeing carbon markets must confront how to measure the comparability of efforts among markets and relative to a variety of other policy approaches.
Institutional subscribers to the NBER working paper series, and residents of developing countries may download this paper without additional charge at www.nber.org.
Resumo:
© 2014 by Annual Reviews.Carbon markets are substantial and expanding. There are many lessons from experience over the past 9 years: fewer free allowances, careful moderation of low and high prices, and a recognition that trading systems require adjustments that have consequences for market participants and market confidence. Moreover, the emerging international architecture features separate emissions trading systems serving distinct jurisdictions. These programs are complemented by a variety of other types of policies alongside the carbon markets. This architecture sits in sharp contrast to the integrated global trading architecture envisioned 15 years ago by the designers of the Kyoto Protocol and raises a suite of new questions. In this new architecture, jurisdictions with emissions trading have to decide how, whether, and when to link with one another, and policy makers must confront how to measure both the comparability of efforts among markets and the comparability between markets and a variety of other policy approaches.
Resumo:
This article examines the behavior of equity trading volume and volatility for the individual firms composing the Standard & Poor's 100 composite index. Using multivariate spectral methods, we find that fractionally integrated processes best describe the long-run temporal dependencies in both series. Consistent with a stylized mixture-of-distributions hypothesis model in which the aggregate "news"-arrival process possesses long-memory characteristics, the long-run hyperbolic decay rates appear to be common across each volume-volatility pair.
Resumo:
New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).
Resumo:
On efficiency grounds, the economics community has to date tended to emphasize price-based policies to address climate change - such as taxes or a "safety-valve" price ceiling for cap-and-trade - while environmental advocates have sought a more clear quantitative limit on emissions. This paper presents a simple modification to the idea of a safety valve - a quantitative limit that we call the allowance reserve. Importantly, this idea may bridge the gap between competing interests and potentially improve efficiency relative to tax or other price-based policies. The last point highlights the deficiencies in several previous studies of price and quantity controls for climate change that do not adequately capture the dynamic opportunities within a cap-and-trade system for allowance banking, borrowing, and intertemporal arbitrage in response to unfolding information.