6 resultados para Electricity market prices forecast
em Duke University
Resumo:
To maintain a strict balance between demand and supply in the US power systems, the Independent System Operators (ISOs) schedule power plants and determine electricity prices using a market clearing model. This model determines for each time period and power plant, the times of startup, shutdown, the amount of power production, and the provisioning of spinning and non-spinning power generation reserves, etc. Such a deterministic optimization model takes as input the characteristics of all the generating units such as their power generation installed capacity, ramp rates, minimum up and down time requirements, and marginal costs for production, as well as the forecast of intermittent energy such as wind and solar, along with the minimum reserve requirement of the whole system. This reserve requirement is determined based on the likelihood of outages on the supply side and on the levels of error forecasts in demand and intermittent generation. With increased installed capacity of intermittent renewable energy, determining the appropriate level of reserve requirements has become harder. Stochastic market clearing models have been proposed as an alternative to deterministic market clearing models. Rather than using a fixed reserve targets as an input, stochastic market clearing models take different scenarios of wind power into consideration and determine reserves schedule as output. Using a scaled version of the power generation system of PJM, a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia, and wind scenarios generated from BPA (Bonneville Power Administration) data, this paper explores a comparison of the performance between a stochastic and deterministic model in market clearing. The two models are compared in their ability to contribute to the affordability, reliability and sustainability of the electricity system, measured in terms of total operational costs, load shedding and air emissions. The process of building the models and running for tests indicate that a fair comparison is difficult to obtain due to the multi-dimensional performance metrics considered here, and the difficulty in setting up the parameters of the models in a way that does not advantage or disadvantage one modeling framework. Along these lines, this study explores the effect that model assumptions such as reserve requirements, value of lost load (VOLL) and wind spillage costs have on the comparison of the performance of stochastic vs deterministic market clearing models.
Resumo:
We show that "commodity currency" exchange rates have surprisingly robust power in predicting global commodity prices, both in-sample and out-of-sample, and against a variety of alternative benchmarks. This result is of particular interest to policy makers, given the lack of deep forward markets in many individual commodities, and broad aggregate commodity indices in particular. We also explore the reverse relationship (commodity prices forecasting exchange rates) but find it to be notably less robust. We offer a theoretical resolution, based on the fact that exchange rates are strongly forward-looking, whereas commodity price fluctuations are typically more sensitive to short-term demand imbalances. © 2010 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology.
Resumo:
Recent empirical findings suggest that the long-run dependence in U.S. stock market volatility is best described by a slowly mean-reverting fractionally integrated process. The present study complements this existing time-series-based evidence by comparing the risk-neutralized option pricing distributions from various ARCH-type formulations. Utilizing a panel data set consisting of newly created exchange traded long-term equity anticipation securities, or leaps, on the Standard and Poor's 500 stock market index with maturity times ranging up to three years, we find that the degree of mean reversion in the volatility process implicit in these prices is best described by a Fractionally Integrated EGARCH (FIEGARCH) model. © 1999 Elsevier Science S.A. All rights reserved.
Resumo:
We analyze the cost-effectiveness of electric utility ratepayer-funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential longterm demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and a 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate. Copyright © 2012 by the IAEE. All rights reserved.
Resumo:
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R(2) = 0.93, p = 0.04, 2003-2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.
Resumo:
I demonstrate a powerful tension between acquiring information and incorporating it into asset prices, the two core elements of price discovery. As a salient case, I focus on the transformative rise of algorithmic trading (AT) typically associated with improved price efficiency. Using a measure of the relative information content of prices and a comprehensive panel of 37,325 stock-quarters of SEC market data, I establish instead that algorithmic trading strongly decreases the net amount of information in prices. The increase in price distortions associated with the AT “information gap” is roughly $42.6 billion/year for U.S. common stocks around earnings announcement events alone. Information losses are concentrated among stocks with high shares of algorithmic liquidity takers relative to algorithmic liquidity makers, suggesting that aggressive AT powerfully deters fundamental information acquisition despite its importance for translating available information into prices.