5 resultados para Electricity Distribution Market
em Duke University
Resumo:
To maintain a strict balance between demand and supply in the US power systems, the Independent System Operators (ISOs) schedule power plants and determine electricity prices using a market clearing model. This model determines for each time period and power plant, the times of startup, shutdown, the amount of power production, and the provisioning of spinning and non-spinning power generation reserves, etc. Such a deterministic optimization model takes as input the characteristics of all the generating units such as their power generation installed capacity, ramp rates, minimum up and down time requirements, and marginal costs for production, as well as the forecast of intermittent energy such as wind and solar, along with the minimum reserve requirement of the whole system. This reserve requirement is determined based on the likelihood of outages on the supply side and on the levels of error forecasts in demand and intermittent generation. With increased installed capacity of intermittent renewable energy, determining the appropriate level of reserve requirements has become harder. Stochastic market clearing models have been proposed as an alternative to deterministic market clearing models. Rather than using a fixed reserve targets as an input, stochastic market clearing models take different scenarios of wind power into consideration and determine reserves schedule as output. Using a scaled version of the power generation system of PJM, a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia, and wind scenarios generated from BPA (Bonneville Power Administration) data, this paper explores a comparison of the performance between a stochastic and deterministic model in market clearing. The two models are compared in their ability to contribute to the affordability, reliability and sustainability of the electricity system, measured in terms of total operational costs, load shedding and air emissions. The process of building the models and running for tests indicate that a fair comparison is difficult to obtain due to the multi-dimensional performance metrics considered here, and the difficulty in setting up the parameters of the models in a way that does not advantage or disadvantage one modeling framework. Along these lines, this study explores the effect that model assumptions such as reserve requirements, value of lost load (VOLL) and wind spillage costs have on the comparison of the performance of stochastic vs deterministic market clearing models.
Resumo:
Consistent with the implications from a simple asymmetric information model for the bid-ask spread, we present empirical evidence that the size of the bid-ask spread in the foreign exchange market is positively related to the underlying exchange rate uncertainty. The estimation results are based on an ordered probit analysis that captures the discreteness in the spread distribution, with the uncertainty of the spot exchange rate being quantified through a GARCH type model. The data sets consists of more than 300,000 continuously recorded Deutschemark/dollar quotes over the period from April 1989 to June 1989. © 1994.
Resumo:
OBJECTIVE: This report updates our earlier work on the returns to pharmaceutical research and development (R&D) in the US (1980 to 1984), which showed that the returns distributions are highly skewed. It evaluates a more recent cohort of new drug introductions in the US (1988 to 1992) and examines how the returns distribution is emerging for drugs with life cycles concentrated in the 1990s versus the 1980s. DESIGN AND SETTING: Methods were described in detail in our earlier reports. The current sample included 110 new drug entities (including 28 orphan drugs), and sales data were obtained for the period 1988 to 1998, which represented between 7 and 11 years of sales for the drugs included. 20 years was chosen as the expected market life for this cohort, and a 2-step procedure was used to project future sales for the drugs--during the period until patent expiry and then beyond patent expiry until the 20-year time-horizon was completed. Thus, the values in the first half of the life cycle are essentially based on realised sales, while those in the second half are projected using information on patent expiry and other inputs. MAIN OUTCOME MEASURES AND RESULTS: Peak annual sales for the top decile of drugs introduced between 1988 and 1992 in the US amounted to almost $US1.1 billion compared with peak sales of less than $US175 million (1992 values) for the mean compound. In particular, the top decile accounted for 56% of overall sales revenue. Although the sales distributions were skewed in both our earlier and current analysis, the top decile in the later time-period exhibited more rapid rates of growth after launch, a peak that was more than 50% greater in real terms than for the 1980 to 1984 cohort, and a faster rate of expected decline in sales after patent expiry. One factor contributing to the distribution of sales revenues becoming more skewed over time is the orphan drug phenomenon (i.e. most of the orphan drugs are concentrated at the bottom of the distribution). CONCLUSION: The distribution of sales revenues for new drug compounds is highly skewed in nature. In this regard, the top decile of new drugs accounts for more than half of the total sales generated by the 1988 to 1992 cohort analysed. Furthermore, the distribution of sales revenues for this cohort is more skewed than that of the 1980 to 1984 cohort we analysed in previous research.
Resumo:
This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.
In the second essay, “A Framework for Estimating Persistence of Local Labor
Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.
In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.
Resumo:
This paper presents an economic model of the effects of identity and social norms on consumption patterns. By incorporating qualitative studies in psychology and sociology, I propose a utility function that features two components – economic (functional) and identity elements. This setup is extended to analyze a market comprising a continuum of consumers, whose identity distribution along a spectrum of binary identities is described by a Beta distribution. I also introduce the notion of salience in the context of identity and consumption decisions. The key result of the model suggests that fundamental economic parameters, such as price elasticity and market demand, can be altered by identity elements. In addition, it predicts that firms in perfectly competitive markets may associate their products with certain types of identities, in order to reduce product substitutability and attain price-setting power.