8 resultados para Electricity Demand, Causality, Cointegration Analysis

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the cost-effectiveness of electric utility ratepayer-funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential longterm demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and a 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate. Copyright © 2012 by the IAEE. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation studies capacity investments in energy sources, with a focus on renewable technologies, such as solar and wind energy. We develop analytical models to provide insights for policymakers and use real data from the state of Texas to corroborate our findings.

We first take a strategic perspective and focus on electricity pricing policies. Specifically, we investigate the capacity investments of a utility firm in renewable and conventional energy sources under flat and peak pricing policies. We consider generation patterns and intermittency of solar and wind energy in relation to the electricity demand throughout a day. We find that flat pricing leads to a higher investment level for solar energy and it can still lead to more investments in wind energy if considerable amount of wind energy is generated throughout the day.

In the second essay, we complement the first one by focusing on the problem of matching supply with demand in every operating period (e.g., every five minutes) from the perspective of a utility firm. We study the interaction between renewable and conventional sources with different levels of operational flexibility, i.e., the possibility

of quickly ramping energy output up or down. We show that operational flexibility determines these interactions: renewable and inflexible sources (e.g., nuclear energy) are substitutes, whereas renewable and flexible sources (e.g., natural gas) are complements.

In the final essay, rather than the capacity investments of the utility firms, we focus on the capacity investments of households in rooftop solar panels. We investigate whether or not these investments may cause a utility death spiral effect, which is a vicious circle of increased solar adoption and higher electricity prices. We observe that the current rate-of-return regulation may lead to a death spiral for utility firms. We show that one way to reverse the spiral effect is to allow the utility firms to maximize their profits by determining electricity prices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We estimate a carbon mitigation cost curve for the U.S. commercial sector based on econometric estimation of the responsiveness of fuel demand and equipment choices to energy price changes. The model econometrically estimates fuel demand conditional on fuel choice, which is characterized by a multinomial logit model. Separate estimation of end uses (e.g., heating, cooking) using the U.S. Commercial Buildings Energy Consumption Survey allows for exceptionally detailed estimation of price responsiveness disaggregated by end use and fuel type. We then construct aggregate long-run elasticities, by fuel type, through a series of simulations; own-price elasticities range from -0.9 for district heat services to -2.9 for fuel oil. The simulations form the basis of a marginal cost curve for carbon mitigation, which suggests that a price of $20 per ton of carbon would result in an 8% reduction in commercial carbon emissions, and a price of $100 per ton would result in a 28% reduction. © 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To maintain a strict balance between demand and supply in the US power systems, the Independent System Operators (ISOs) schedule power plants and determine electricity prices using a market clearing model. This model determines for each time period and power plant, the times of startup, shutdown, the amount of power production, and the provisioning of spinning and non-spinning power generation reserves, etc. Such a deterministic optimization model takes as input the characteristics of all the generating units such as their power generation installed capacity, ramp rates, minimum up and down time requirements, and marginal costs for production, as well as the forecast of intermittent energy such as wind and solar, along with the minimum reserve requirement of the whole system. This reserve requirement is determined based on the likelihood of outages on the supply side and on the levels of error forecasts in demand and intermittent generation. With increased installed capacity of intermittent renewable energy, determining the appropriate level of reserve requirements has become harder. Stochastic market clearing models have been proposed as an alternative to deterministic market clearing models. Rather than using a fixed reserve targets as an input, stochastic market clearing models take different scenarios of wind power into consideration and determine reserves schedule as output. Using a scaled version of the power generation system of PJM, a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia, and wind scenarios generated from BPA (Bonneville Power Administration) data, this paper explores a comparison of the performance between a stochastic and deterministic model in market clearing. The two models are compared in their ability to contribute to the affordability, reliability and sustainability of the electricity system, measured in terms of total operational costs, load shedding and air emissions. The process of building the models and running for tests indicate that a fair comparison is difficult to obtain due to the multi-dimensional performance metrics considered here, and the difficulty in setting up the parameters of the models in a way that does not advantage or disadvantage one modeling framework. Along these lines, this study explores the effect that model assumptions such as reserve requirements, value of lost load (VOLL) and wind spillage costs have on the comparison of the performance of stochastic vs deterministic market clearing models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genetics studies. Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. This article develops a computationally feasible method based on boosting and stability selection. Specifically, we modified the component-wise gradient boosting to improve the computational feasibility and introduced random permutation in stability selection for controlling false discoveries. RESULTS: We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients. AVAILABILITY AND IMPLEMENTATION: The related source code and documents are freely available at https://sites.google.com/site/bestumich/issues. CONTACT: yili@umich.edu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2016 International Journal of the Economics of Business.Human blood plasma and its derivative therapies have been used therapeutically for more than 50 years, after first being widely used to treat injuries during World War II. In certain countries, manufacturers of these therapies – known as plasma-derived medicinal products (PDMPs) – compensate plasma donors, raising healthcare and ethical concerns among some parties. In particular, the World Health Organization has taken a strong advocacy position that compensation for blood donations should be eliminated worldwide. This review evaluates the key economic factors underlying the supply and demand for PDMPs and the evidence pointing to the policy options that are most likely to maintain a reliable supply of life-sustaining therapies. It concludes that compensated plasma donation is important for maintaining adequate and consistent supplies of plasma and limits the risk of under-treatment for the foreseeable future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this dissertation is to examine, model and estimate firm responses to

demand shocks by focusing on specific industries where demand shocks are well

identified. Combining reduced-form evidence and structural analysis, this dissertation

extends the economic literature by focusing on within-firm responses of firms

to two important demand shocks that are identifiable in empirical settings. First,

I focus on how firms respond to a decrease in effective demand due to competition

shocks coming from globalization. By considering China's accession to the World

Trade Organization in 2001 and its impact on the apparel industry, the aim of these

chapters is to answer how firms react to the increase in Chinese import competition,

what is the mechanism behind these responses, and how important they are in explaining

the survival of the Peruvian apparel industry. Second, I study how suppliers'

survival probability relates to the sudden disruption of their main customer-supplier

relationships with downstream manufacturers, conditional on suppliers' own idiosyncratic

characteristics such as physical productivity.