7 resultados para Electrical relaxation

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal nanoparticles (NPs) respond to electromagnetic waves by creating surface plasmons (SPs), which are localized, collective oscillations of conduction electrons on the NP surface. When interparticle distances are small, SPs generated in neighboring NPs can couple to one another, creating intense fields. The coupled particles can then act as optical antennae capturing and refocusing light between them. Furthermore, a molecule linking such NPs can be affected by these interactions as well. Here, we show that by using an appropriate, highly conjugated multiporphyrin chromophoric wire to couple gold NP arrays, plasmons can be used to control electrical properties. In particular, we demonstrate that the magnitude of the observed photoconductivity of covalently interconnected plasmon-coupled NPs can be tuned independently of the optical characteristics of the molecule-a result that has significant implications for future nanoscale optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕ_{m} above which P persists over many cycles; below ϕ_{m}, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAlN thin films and InAlN/GaN heterostructures have been intensively studied over recent years due to their applications in a variety of devices, including high electron mobility transistors (HEMTs). However, the quality of InAlN remains relatively poor with basic material and structural characteristics remain unclear.

Molecular beam epitaxy (MBE) is used to synthesize the materials for this research, as MBE is a widely used tool for semiconductor growth but has rarely been explored for InAlN growth. X-ray photoelectron spectroscopy (XPS) is used to determine the electronic and chemical characteristics of InAlN surfaces. This tool is used for the first time in application to MBE-grown InAlN and heterostructures for the characterization of surface oxides, the bare surface barrier height (BSBH), and valence band offsets (VBOs).

The surface properties of InAlN are studied in relation to surface oxide characteristics and formation. First, the native oxide compositions are studied. Then, methods enabling the effective removal of the native oxides are found. Finally, annealing is explored for the reliable growth of surface thermal oxides.

The bulk properties of InAlN films are studied. The unintentional compositional grading in InAlN during MBE growth is discovered and found to be affected by strain and relaxation. The optical characterization of InAlN using spectroscopy ellipsometry (SE) is also developed and reveals that a two-phase InAlN model applies to MBE-grown InAlN due to its natural formation of a nanocolumnar microstructure. The insertion of an AlN interlayer is found to mitigate the formation of this microstructure and increases mobility of whole structure by fivefold.

Finally, the synthesis and characterization of InAlN/GaN HEMT device structures are explored. The density and energy distribution of surface states are studied with relationships to surface chemical composition and surface oxide. The determination of the VBOs of InAlN/GaN structures with different In compositions are discussed at last.