3 resultados para Effective quantum yield
em Duke University
Resumo:
Transient dynamical studies of bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethyne (PPd(2)), 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II) (PPd(3)), bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethyne (PPt(2)), and 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II) (PPt(3)) show that the electronically excited triplet states of these highly conjugated supermolecular chromophores can be produced at unit quantum yield via fast S(1) → T(1) intersystem crossing dynamics (τ(isc): 5.2-49.4 ps). These species manifest high oscillator strength T(1) → T(n) transitions over broad NIR spectral windows. The facts that (i) the electronically excited triplet lifetimes of these PPd(n) and PPt(n) chromophores are long, ranging from 5 to 50 μs, and (ii) the ground and electronically excited absorptive manifolds of these multipigment ensembles can be extensively modulated over broad spectral domains indicate that these structures define a new precedent for conjugated materials featuring low-lying π-π* electronically excited states for NIR optical limiting and related long-wavelength nonlinear optical (NLO) applications.
Resumo:
In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.
Resumo:
Prostate and breast cancers are two of the most common types of cancer in the United States, and those cancers metastasize to bone in more than two thirds of patients. Recent evidence suggests that thermal therapy is effective at treating metastatic bone cancer. For example, thermal therapy enables targeted drug delivery to bone, ablation of cancer cells in bone marrow, and palliation of bone pain. Thermal therapy of bone metastases would be greatly improved if it were possible to image the temperature of the tissue surrounding the disease, which is usually red bone marrow (RBM). Unfortunately, current thermal imaging techniques are inaccurate in RBM.
This dissertation shows that many of the difficulties with thermal imaging of RBM can be overcome using a magnetic resonance phenomenon called an intermolecular multiple quantum coherence (iMQC). Herein, iMQCs are detected with a magnetic resonance imaging (MRI) pulse sequence called multi-spin-echo HOMOGENIZED with off resonance transfer (MSE-HOT). Compared to traditional methods, MSE-HOT provided ten-fold more accurate images of temperature change. Furthermore, MSE-HOT was translated to a human MRI scanner, which enabled imaging of RBM temperature during heating with a clinical focused ultrasound applicator. In summary, this dissertation develops a MRI technique that enables thermal imaging of RBM during thermal therapy of bone metastases.