4 resultados para Effective
em Duke University
Resumo:
Abstract The transition from trainee to junior faculty member can be both exciting and daunting. However, a paucity of medical literature exists to help guide new faculty in this transition. Therefore, we adapted work from the business management literature on what is referred to as "on-boarding"; effectively integrating and advancing one's position as a new employee. This article outlines strategies for cultivating one's own on-boarding as a junior faculty member at large academic medical centers. These strategies are extrapolated from management practices, culled from the medical literature on developing and retaining junior faculty, and, finally, borrowed from the hard-won knowledge of junior and senior faculty members. They advise new faculty to: (1) start early, (2) define your role--"managing yourself," (3) invest in/secure early wins, (4) manage your manager, (5) identify the "true (or hidden)" organizational culture, (6) reassess your own goals--"look in the rearview mirror and to the horizon," and (7) use your mentors effectively. These strategies provide a roadmap for new faculty members to transition as effectively as possible to their new jobs.
Resumo:
We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI or EEG data, DDMs usually have complex formulations and thus can accommodate only a few regions, due to limitations in spatial resolution and/or temporal resolution of these imaging modalities. In contrast, we formulate our model in the context of ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much simpler DDM, allowing investigation of complex connections between many regions. To identify functionally segregated sub-networks, a form of biologically economical brain networks, we propose the Potts model for the DDM parameters. The neuronal states of brain components are represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood criterion that combines the state and observation equations. The Potts model is converted to the Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG dataset.
Resumo:
Office-based percutaneous revision of a testicular prosthesis has never been reported. A patient received a testicular prosthesis but was dissatisfied with the firmness of the implant. In an office setting, the prosthesis was inflated with additional fluid via a percutaneous approach. Evaluated outcomes included patient satisfaction, prosthesis size, recovery time, and cost savings. The patient was satisfied, with no infection, leak, or complication after more than 1 year of follow-up, at significantly less cost than revision surgery. Percutaneous adjustment of testicular prosthesis fill-volume can be safe, inexpensive, and result in good patient satisfaction.