5 resultados para Economics Education
em Duke University
Resumo:
At least since the seminal works of Jacob Mincer, labor economists have sought to understand how students make higher education investment decisions. Mincer’s original work seeks to understand how students decide how much education to accrue; subsequent work by various authors seeks to understand how students choose where to attend college, what field to major in, and whether to drop out of college.
Broadly speaking, this rich sub-field of literature contributes to society in two ways: First, it provides a better understanding of important social behaviors. Second, it helps policymakers anticipate the responses of students when evaluating various policy reforms.
While research on the higher education investment decisions of students has had an enormous impact on our understanding of society and has shaped countless education policies, students are only one interested party in the higher education landscape. In the jargon of economists, students represent only the `demand side’ of higher education---customers who are choosing options from a set of available alternatives. Opposite students are instructors and administrators who represent the `supply side’ of higher education---those who decide which options are available to students.
For similar reasons, it is also important to understand how individuals on the supply side of education make decisions: First, this provides a deeper understanding of the behaviors of important social institutions. Second, it helps policymakers anticipate the responses of instructors and administrators when evaluating various reforms. However, while there is substantial literature understanding decisions made on the demand side of education, there is far less attention paid to decisions on the supply side of education.
This dissertation uses empirical evidence to better understand how instructors and administrators make decisions and the implications of these decisions for students.
In the first chapter, I use data from Duke University and a Bayesian model of correlated learning to measure the signal quality of grades across academic fields. The correlated feature of the model allows grades in one academic field to signal ability in all other fields allowing me to measure both ‘own category' signal quality and ‘spillover' signal quality. Estimates reveal a clear division between information rich Science, Engineering, and Economics grades and less informative Humanities and Social Science grades. In many specifications, information spillovers are so powerful that precise Science, Engineering, and Economics grades are more informative about Humanities and Social Science abilities than Humanities and Social Science grades. This suggests students who take engineering courses during their Freshman year make more informed specialization decisions later in college.
In the second chapter, I use data from the University of Central Arkansas to understand how universities decide which courses to offer and how much to spend on instructors for these courses. Course offerings and instructor characteristics directly affect the courses students choose and the value they receive from these choices. This chapter reveals the university preferences over these student outcomes which best explain observed course offerings and instructors. This allows me to assess whether university incentives are aligned with students, to determine what alternative university choices would be preferred by students, and to illustrate how a revenue neutral tax/subsidy policy can induce a university to make these student-best decisions.
In the third chapter, co-authored with Thomas Ahn, Peter Arcidiacono, and Amy Hopson, we use data from the University of Kentucky to understand how instructors choose grading policies. In this chapter, we estimate an equilibrium model in which instructors choose grading policies and students choose courses and study effort given grading policies. In this model, instructors set both a grading intercept and a return on ability and effort. This builds a rich link between the grading policy decisions of instructors and the course choices of students. We use estimates of this model to infer what preference parameters best explain why instructors chose estimated grading policies. To illustrate the importance of these supply side decisions, we show changing grading policies can substantially reduce the gender gap in STEM enrollment.
Resumo:
This dissertation is comprised of three essays in the economics of education. In the first essay, I examine how college students' major choice and major switching behavior responds to major-specific labor market shocks. The second essay explores the incidence and persistence of overeducation for workers in the United States. The final essay examines the role that students' cognitive and non-cognitive skills play in their transition from secondary to postsecondary education, and how the effect of these skills are moderated by race, gender, and socioeconomic status.
Resumo:
We provide evidence that college graduation plays a direct role in revealing ability to the labor market. Using the NLSY79, our results suggest that ability is observed nearly perfectly for college graduates, but is revealed to the labor market more gradually for high school graduates. Consequently, from the beginning of their careers, college graduates are paid in accordance with their own ability, while the wages of high school graduates are initially unrelated to their own ability. This view of ability revelation in the labor market has considerable power in explaining racial differences in wages, education, and returns to ability.
Resumo:
Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?
The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.
The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.
The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.