2 resultados para Ecological responses
em Duke University
Resumo:
While environmental literary criticism has traditionally focused its attention on the textual representation of specific places, recent ecocritical scholarship has expanded this focus to consider the treatment of time in environmental literature and culture. As environmental scholars, activists, scientists, and artists have noted, one of the major difficulties in grasping the reality and implications of climate change is a limited temporal imagination. In other words, the ability to comprehend and integrate different shapes, scales, and speeds of history is a precondition for ecologically sustainable and socially equitable responses to climate change.
My project examines the role that literary works might play in helping to create such an expanded sense of history. As I show how American writers after 1945 have treated the representation of time and history in relation to environmental questions, I distinguish between two textual subfields of environmental temporality. The first, which I argue is characteristic of mainstream environmentalism, is disjunctive, with abrupt environmental changes separating the past and the present. This subfield contains many canonical works of postwar American environmental writing, including Aldo Leopold’s A Sand County Almanac, Edward Abbey’s Desert Solitaire, Annie Dillard’s Pilgrim at Tinker Creek, and Kim Stanley Robinson’s Science in the Capital trilogy. From treatises on the ancient ecological histories of particular sites to meditations on the speed of climate change, these works evince a preoccupation with environmental time that has not been acknowledged within the spatially oriented field of environmental criticism. However, by positing radical breaks between environmental pasts and environmental futures, they ultimately enervate the political charge of history and elide the human dimensions of environmental change, in terms both of environmental injustice and of possible social responses.
By contrast, the second subfield, which I argue is characteristic of environmental justice, is continuous, showing how historical patterns persist even across social and ecological transformations. I trace this version of environmental thought through a multicultural corpus of novels consisting of Ralph Ellison’s Invisible Man, Ishmael Reed’s Mumbo Jumbo, Helena María Viramontes’ Under the Feet of Jesus, Linda Hogan’s Solar Storms, and Octavia Butler’s Parable of the Sower and Parable of the Talents. Some of these novels do not document specific instances of environmental degradation or environmental injustice and, as a result, have not been critically interpreted as relevant for environmental analysis; others are more explicit in their discussion of environmental issues and are recognized as part of the canon of American environmental literature. However, I demonstrate that, across all of these texts, counterhegemonic understandings of history inform resistance to environmental degradation and exploitation. These texts show that environmental problems cannot be fully understood, nor environmental futures addressed, without recognizing the way that social histories of inequality and environmental histories of extraction continue to structure politics and ecology in the present.
Ultimately, then, the project offers three conclusions. First, it suggests that the second version of environmental temporality holds more value than the first for environmental cultural studies, in that it more compellingly and accurately represents the social implications of environmental issues. Second, it shows that “environmental literature” is most usefully understood not as the literature that explicitly treats environmental issues, but rather as the literature that helps to produce the sense of time that contemporary environmental crises require. Third, it shows how literary works can not only illuminate the relationship between American ideas about nature and social justice, but also operate as a specifically literary form of eco-political activism.
Resumo:
Microorganisms mediate many biogeochemical processes critical to the functioning of ecosystems, which places them as an intermediate between environmental change and the resulting ecosystem response. Yet, we have an incomplete understanding of these relationships, how to predict them, and when they are influential. Understanding these dynamics will inform ecological principles developed for macroorganisms and aid expectations for microbial responses to new gradients. To address this research goal, I used two studies of environmental gradients and a literature synthesis.
With the gradient studies, I assessed microbial community composition in stream biofilms across a gradient of alkaline mine drainage. I used multivariate approaches to examine changes in the non-eukaryote microbial community composition of taxa (chapter 2) and functional genes (chapter 3). I found that stream biofilms at sites receiving alkaline mine drainage had distinct community composition and also differed in the composition of functional gene groups compared with unmined reference sites. Compositional shifts were not dominated by groups that could benefit from mining associated increases of terminal electron acceptors; two-thirds of responsive taxa and functional gene groups were negatively associated with mining. The majority of subsidies and stressors (nitrate, sulfate, conductivity) had no consistent relationships with taxa or gene abundances. However, methane metabolism genes were less abundant at mined sites and there was a strong, positive correlation between selenate reductase gene abundance and mining-associated selenium. These results highlighted the potential for indirect factors to also play an important role in explaining compositional shifts.
In the fourth chapter, I synthesized studies that use environmental perturbations to explore microbial community structure and microbial process connections. I examined nine journals (2009–13) and found that many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant. No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure. Together, the findings suggested that few publications report statistically testing structure-process links; but when tested, links often occurred yet shared few commonalities in linked processes or structures and the techniques used for measuring them.
Although the research community has made progress, much work remains to ensure that the vast and growing wealth of microbial informatics data is translated into useful ecological information. In part, this challenge can be approached through using hypotheses to guide analyses, but also by being open to opportunities for hypothesis generation. The results from my dissertation work advise that it is important to carefully interpret shifts in community composition in relation to abiotic characteristics and recommend considering ecological, thermodynamic, and kinetic principles to understand the properties governing community responses to environmental perturbation.