18 resultados para Ecological economics

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The goal of this paper is to improve our understanding of the role of institutional arrangements and ecological factors that facilitate the emergence and sustainability of successful collective action in small-scale fishing social-ecological systems. Using a modified logistic growth function, we simulate how ecological factors (i.e. carrying capacity) affect small-scale fishing communities with varying degrees of institutional development (i.e. timeliness to adopt new institutions and the degree to which harvesting effort is reduced), in their ability to avoid overexploitation. Our results show that strong and timely institutions are necessary but not sufficient to maintain sustainable harvests over time. The sooner communities adopt institutions, and the stronger the institutions they adopt, the more likely they are to sustain the resource stock. Exactly how timely the institutions must be adopted, and by what amount harvesting effort must be diminished, depends on the ecological carrying capacity of the species at the particular location. Small differences in the carrying capacity between fishing sites, even under scenarios of similar institutional development, greatly affects the likelihood of effective collective action. © 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study assesses the value of restoring forested wetlands via the U.S. government's Wetlands Reserve Program (WRP) in the Mississippi Alluvial Valley by quantifying and monetizing ecosystem services. The three focal services are greenhouse gas (GHG) mitigation, nitrogen mitigation, and waterfowl recreation. Site- and region-level measurements of these ecosystem services are combined with process models to quantify their production on agricultural land, which serves as the baseline, and on restored wetlands. We adjust and transform these measures into per-hectare, valuation-ready units and monetize them with prices from emerging ecosystem markets and the environmental economics literature. By valuing three of the many ecosystem services produced, we generate lower bound estimates for the total ecosystem value of the wetlands restoration. Social welfare value is found to be between $1435 and $1486/ha/year, with GHG mitigation valued in the range of $171 to $222, nitrogen mitigation at $1248, and waterfowl recreation at $16. Limited to existing markets, the estimate for annual market value is merely $70/ha, but when fully accounting for potential markets, this estimate rises to $1035/ha. The estimated social value surpasses the public expenditure or social cost of wetlands restoration in only 1 year, indicating that the return on public investment is very attractive for the WRP. Moreover, the potential market value is substantially greater than landowner opportunity costs, showing that payments to private landowners to restore wetlands could also be profitable for individual landowners. © 2009 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Market failures associated with environmental pollution interact with market failures associated with the innovation and diffusion of new technologies. These combined market failures provide a strong rationale for a portfolio of public policies that foster emissions reduction as well as the development and adoption of environmentally beneficial technology. Both theory and empirical evidence suggest that the rate and direction of technological advance is influenced by market and regulatory incentives, and can be cost-effectively harnessed through the use of economic-incentive based policy. In the presence of weak or nonexistent environmental policies, investments in the development and diffusion of new environmentally beneficial technologies are very likely to be less than would be socially desirable. Positive knowledge and adoption spillovers and information problems can further weaken innovation incentives. While environmental technology policy is fraught with difficulties, a long-term view suggests a strategy of experimenting with policy approaches and systematically evaluating their success. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limb, trunk, and body weight measurements were obtained for growth series of Milne-Edwards's diademed sifaka, Propithecus diadema edwardsi, and the golden-crowned sifaka, Propithecus tattersalli. Similar measures were obtained also for primarily adults of two subspecies of the western sifaka: Propithecus verreauxi coquereli, Coquerel's sifaka, and Propithecus verreauxi verreauxi, Verreaux's sifaka. Ontogenetic series for the larger-bodied P. d. edwardsi and the smaller-bodied P. tattersalli were compared to evaluate whether species-level differences in body proportions result from the differential extension of common patterns of relative growth. In bivariate plots, both subspecies of P. verreauxi were included to examine whether these taxa also lie along a growth trajectory common to all sifakas. Analyses of the data indicate that postcranial proportions for sifakas are ontogenetically scaled, much as demonstrated previously with cranial dimensions for all three species (Ravosa, 1992). As such, P. d. edwardsi apparently develops larger overall size primarily by growing at a faster rate, but not for a longer duration of time, than P. tattersalli and P. verreauxi; this is similar to results based on cranial data. A consideration of Malagasy lemur ecology suggests that regional differences in forage quality and resource availability have strongly influenced the evolutionary development of body-size variation in sifakas. On one hand, the rainforest environment of P. d. edwardsi imposes greater selective pressures for larger body size than the dry-forest environment of P. tattersalli and P. v. coquereli, or the semi-arid climate of P. v. verreauxi. On the other hand, as progressively smaller-bodied adult sifakas are located in the east, west, and northwest, this apparently supports suggestions that adult body size is set by dry-season constraints on food quality and distribution (i.e., smaller taxa are located in more seasonal habitats such as the west and northeast). Moreover, the fact that body-size differentiation occurs primarily via differences in growth rate is also due apparently to differences in resource seasonality (and juvenile mortality risk in turn) between the eastern rainforest and the more temperate northeast and west. Most scaling coefficients for both arm and leg growth range from slight negative allometry to slight positive allometry. Given the low intermembral index for sifakas, which is also an adaptation for propulsive hindlimb-dominated jumping, this suggests that differences in adult limb proportions are largely set prenatally rather than being achieved via higher rates of postnatal hindlimb growth.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My goal was to describe how biological and ecological factors give shape to fishing practices that can contribute to the successful self-governance of a small-scale fishing system in the Gulf of California, Mexico. The analysis was based on a comparison of the main ecological and biological indicators that fishers claim to use to govern their day-to-day decision making about fishing and data collected in situ. I found that certain indicators allow fishers to learn about differences and characteristics of the resource system and its units. Fishers use such information to guide their day-to-day fishing decisions. More importantly, these decisions appear unable to shape the reproductive viability of the fishery because no indicators were correlated to the reproductive cycle of the target species. As a result, the fishing practices constitute a number of mechanisms that might provide short-term buffering capacity against perturbations or stress factors that otherwise would threaten the overall sustainability and self-governance of the system. The particular biological circumstances that shape the harvesting practices might also act as a precursor of self-governance because they provide fishers with enough incentives to meet the costs of organizing the necessary rule structure that underlies a successful self-governance system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Review existing studies and provide new results on the development, regulatory, and market aspects of new oncology drug development. METHODS: We utilized data from the US Food and Drug Administration (FDA), company surveys, and publicly available commercial business intelligence databases on new oncology drugs approved in the United States and on investigational oncology drugs to estimate average development and regulatory approval times, clinical approval success rates, first-in-class status, and global market diffusion. RESULTS: We found that approved new oncology drugs to have a disproportionately high share of FDA priority review ratings, of orphan drug designations at approval, and of drugs that were granted inclusion in at least one of the FDA's expedited access programs. US regulatory approval times were shorter, on average, for oncology drugs (0.5 years), but US clinical development times were longer on average (1.5 years). Clinical approval success rates were similar for oncology and other drugs, but proportionately more of the oncology failures reached expensive late-stage clinical testing before being abandoned. In relation to other drugs, new oncology drug approvals were more often first-in-class and diffused more widely across important international markets. CONCLUSION: The market success of oncology drugs has induced a substantial amount of investment in oncology drug development in the last decade or so. However, given the great need for further progress, the extent to which efforts to develop new oncology drugs will grow depends on future public-sector investment in basic research, developments in translational medicine, and regulatory reforms that advance drug-development science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolution occurring over contemporary time scales can have important effects on populations, communities, and ecosystems. Recent studies show that the magnitude of these effects can be large and can generate feedbacks that further shape evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and movement of water can influence the state and dynamics of terrestrial and aquatic ecosystems through a diversity of mechanisms. These mechanisms can be organized into three general categories wherein water acts as (1) a resource or habitat for biota, (2) a vector for connectivity and exchange of energy, materials, and organisms, and (3) as an agent of geomorphic change and disturbance. These latter two roles are highlighted in current models, which emphasize hydrologic connectivity and geomorphic change as determinants of the spatial and temporal distributions of species and processes in river systems. Water availability, on the other hand, has received less attention as a driver of ecological pattern, despite the prevalence of intermittent streams, and strong potential for environmental change to alter the spatial extent of drying in many regions. Here we summarize long-term research from a Sonoran Desert watershed to illustrate how spatial patterns of ecosystem structure and functioning reflect shifts in the relative importance of different 'roles of water' across scales of drainage size. These roles are distributed and interact hierarchically in the landscape, and for the bulk of the drainage network it is the duration of water availability that represents the primary determinant of ecological processes. Only for the largest catchments, with the most permanent flow regimes, do flood-associated disturbances and hydrologic exchange emerge as important drivers of local dynamics. While desert basins represent an extreme case, the diversity of mechanisms by which the availability and flow of water influence ecosystem structure and functioning are general. Predicting how river ecosystems may respond to future environmental pressures will require clear understanding of how changes in the spatial extent and relative overlap of these different roles of water shape ecological patterns. © 2013 Sponseller et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multidisciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis-St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales. © The Ecological Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.