2 resultados para Earthquake resistant design.

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transition metals such as iron and copper are valued in biology for their redox activities because they are able to access various oxidation states. However, these transition metals are also implicated in a number of human disease states and play a role in bacterial infections. The ability to manipulate and monitor metal ions has vast implications on the fields of biology and human health. As such, the research described here covers two related goals: to manipulate metals in specific biological circumstances and to visualize this disturbance in cellular metal homeostasis.

Antibiotic resistance necessitates the development of drugs that exploit new mechanisms of action such as the disruption of metal homeostasis. In order to manipulate metals at the site of bacterial infection, two prochelators were developed around a β-lactam core such that the active chelator is released in the presence of bacteria that produce the resistance-causing β-lactamase enzyme. Both prochelators display enhanced activity toward resistant bacteria compared to clinical antibiotics.

Fluorescent sensors are a powerful tool for detecting small concentrations of biological analytes. Two analogs of a ratiometric fluorescent sensor were designed and synthesized to monitor cellular concentrations of copper and iron. These sensors were found to operate as designed in vitro; however the fluorescence intensity necessary for quantification of cellular metal pools has not yet been achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Hand hygiene noncompliance is a major cause of nosocomial infection. Nosocomial infection cost data exist, but the effect of hand hygiene noncompliance is unknown. OBJECTIVE: To estimate methicillin-resistant Staphylococcus aureus (MRSA)-related cost of an incident of hand hygiene noncompliance by a healthcare worker during patient care. DESIGN: Two models were created to simulate sequential patient contacts by a hand hygiene-noncompliant healthcare worker. Model 1 involved encounters with patients of unknown MRSA status. Model 2 involved an encounter with an MRSA-colonized patient followed by an encounter with a patient of unknown MRSA status. The probability of new MRSA infection for the second patient was calculated using published data. A simulation of 1 million noncompliant events was performed. Total costs of resulting infections were aggregated and amortized over all events. SETTING: Duke University Medical Center, a 750-bed tertiary medical center in Durham, North Carolina. RESULTS: Model 1 was associated with 42 MRSA infections (infection rate, 0.0042%). Mean infection cost was $47,092 (95% confidence interval [CI], $26,040-$68,146); mean cost per noncompliant event was $1.98 (95% CI, $0.91-$3.04). Model 2 was associated with 980 MRSA infections (0.098%). Mean infection cost was $53,598 (95% CI, $50,098-$57,097); mean cost per noncompliant event was $52.53 (95% CI, $47.73-$57.32). A 200-bed hospital incurs $1,779,283 in annual MRSA infection-related expenses attributable to hand hygiene noncompliance. A 1.0% increase in hand hygiene compliance resulted in annual savings of $39,650 to a 200-bed hospital. CONCLUSIONS: Hand hygiene noncompliance is associated with significant attributable hospital costs. Minimal improvements in compliance lead to substantial savings.