11 resultados para Early Stage
em Duke University
Resumo:
The concept of focal therapy is rapidly evolving and gaining popularity from both physician and patient perspectives. We review the rationale, candidate selection, and results of the first clinical studies of focal cryoablation for selected patients with low volume and low- to low-moderate-risk features of prostate cancer as an alternative to whole-gland treatment. In spite of improved understanding of the tumor biology of early stage disease, we currently have limited tools to select appropriate patients with low- to low-moderate risk unifocal or unilateral prostate cancer who may be amenable to focal therapy. From a technical point, a number of ablative treatment options for focal therapy are available, with cryoablation having the most clinical experience. Recently, several reports have been published from single and multi-institutional studies that discuss focal therapy as a reasonable balance between cancer control and quality-of-life outcomes. Retrospective pathologic data from large prostatectomy series, however, do not clearly reveal valid and reproducible criteria to select appropriate candidates for focal cryoablation because of the complexity of tumorigenesis in early stage disease. At this time, a more feasible option remains hemiablation of the prostate with reasonable certainty about the absence of clinically significant cancer lesion(s) on the contralateral side of the prostate based on three-dimensional transperineal prostate biopsy mapping studies. Minimally invasive, parenchyma-preserving cryoablation can be considered as a potential feasible option in the treatment armamentarium of early stage, localized prostate cancer in appropriately selected candidates. There is a need to further test this technique in randomized, multicenter clinical trials.
Resumo:
BACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.
Resumo:
BACKGROUND: Mutations in the TP53 gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease. METHODS: The TP53 coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage. RESULTS: Missense or chain terminating (null) mutations in TP53 were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict TP53 status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers. CONCLUSIONS: This represents the first attempt to define a genomic signature of TP53 mutation in ovarian cancer. Patterns of gene expression characteristic of TP53 mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of TP53 mutation in breast cancer.
Resumo:
PURPOSE: To define the biology driving the aggressive nature of breast cancer arising in young women. EXPERIMENTAL DESIGN: Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young
Resumo:
Chemoprevention agents are an emerging new scientific area that holds out the promise of delaying or avoiding a number of common cancers. These new agents face significant scientific, regulatory, and economic barriers, however, which have limited investment in their research and development (R&D). These barriers include above-average clinical trial scales, lengthy time frames between discovery and Food and Drug Administration approval, liability risks (because they are given to healthy individuals), and a growing funding gap for early-stage candidates. The longer time frames and risks associated with chemoprevention also cause exclusivity time on core patents to be limited or subject to significant uncertainties. We conclude that chemoprevention uniquely challenges the structure of incentives embodied in the economic, regulatory, and patent policies for the biopharmaceutical industry. Many of these policy issues are illustrated by the recently Food and Drug Administration-approved preventive agents Gardasil and raloxifene. Our recommendations to increase R&D investment in chemoprevention agents include (a) increased data exclusivity times on new biological and chemical drugs to compensate for longer gestation periods and increasing R&D costs; chemoprevention is at the far end of the distribution in this regard; (b) policies such as early-stage research grants and clinical development tax credits targeted specifically to chemoprevention agents (these are policies that have been very successful in increasing R&D investment for orphan drugs); and (c) a no-fault liability insurance program like that currently in place for children's vaccines.
Resumo:
© 2014 UICC.Cytokines such as Interleukin (IL)212p70 ("IL-12") and IL-23 can influence tumor progression. We tested the hypothesis that blood levels of IL-12p40, the common subunit of both cytokines, are associated with melanoma progression. Blood from 2,048 white melanoma patients were collected at a single institution between March 1998 and March 2011. Plasma levels of IL-12p40 were determined for 573 patients (discovery), 249 patients (Validation 1) and 244 patients (Validation 2). Per 10-unit change of IL-12p40 level was used to investigate associations with melanoma patient outcome among all patients or among patients with early or advanced stage. Among stage I/II melanoma patients in the pooled data set, after adjustment for sex, age, stage and blood draw time from diagnosis, elevated IL-12p40 was associated with melanoma recurrence [hazard ratio (HR)51.04 per 10-unit increase in IL-12p40, 95% CI 1.02-1.06, p58.48 × 10-5]; Elevated IL-12p40 was also associated with a poorer melanoma specific survival (HR51.06, 95% CI 1.03-1.09, p53.35 × 10-5) and overall survival (HR51.05, 95% CI 1.03-1.08, p58.78 × 10-7) in multivariate analysis. Among stage III/IV melanoma patients in the pooled data set, no significant association was detected between elevated IL-12p40 and overall survival, or with melanoma specific survival, with or without adjustment for the above covariates. Early stage melanoma patients with elevated IL-12p40 levels are more likely to develop disease recurrence and have a poorer survival. Further investigation with a larger sample size will be needed to determine the role of IL-12p40 in advanced stage melanoma patients.
Resumo:
Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.
Resumo:
Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.
Resumo:
During oncogenesis, cancer cells go through metabolic reprogramming to maintain their high growth rates and adapt to changes in the microenvironment and the lack of essential nutrients. Several types of cancer are dependent on de novo fatty acid synthesis to sustain their growth rates by providing precursors to construct membranes and produce vital signaling lipids. Fatty acid synthase (FASN) catalyze the terminal step of de novo fatty acid synthesis and it is highly expressed in many types of cancers where it’s up-regulation is correlated with cancer aggressiveness and low therapeutic outcome. Many FASN inhibitors were developed and showed potent anticancer activity however, only one inhibitor advanced to early stage clinical trials with some dose limiting toxicities. Using a modified fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen, we identified HS-106, a thiophenopyrimiden FASN inhibitor that has anti-neoplastic activity against breast cancer in vitro and in vivo. HS-106 was able to inhibit both; purified human FASN activity and cellular fatty acid synthesis activity as evaluated by radioactive tracers incorporation into lipids experiments. In proliferation and apoptosis assays, HS-106 was able to block proliferation and induce apoptosis in several breast cancer cell lines. Several rescue experiment and global lipidome analysis were performed to probe the mechanism by which HS-106 induces apoptosis. HS-106 was found to induce several changes in lipids metabolism: (i) inhibit fatty acids synthesis. (ii) Inhibit fatty acids oxidation as indicated by the ability of inhibiting Malonyl CoA accumulation to block HS-106 induced apoptosis and the increase in the abundance of ceramides. (iii) Increase fatty acids uptake and neutral lipids formation as confirmed 14C Palmitate uptake assay and neutral lipids staining. (iv)Inhibit the formation of phospholipids by inhibiting de novo fatty acid synthesis and diverting exogenous fatty acids to neutral lipids. All of these events would lead to disruption in membranes structure and function. HS-106 was also tested in Lapatinib resistant cell lines and it was able to induce apoptosis and synergizes Lapatinib activity in these cell lines. This may be due the disruption of lipid rafts based on the observation that HS-106 reduces the expression of both HER2 and HER3. HS-106 was found to be well tolerated and bioavailable in mice with high elimination rate. HS-106 efficacy was tested in MMTV neu mouse model. Although did not significantly reduced tumor size (alone), HS-106 was able to double the median survival of the mice and showed potent antitumor activity when combined with Carboplatin. Similar results were obtained when same combinations and dosing schedule was used in C3Tag mouse model except for the inability of HS-106 affect mice survival.
From the above, HS-106 represent a novel FASN inhibitor that has anticancer activity both in vivo and in vitro. Being a chemically tractable molecule, the synthetic route to HS-106 is readily adaptable for the preparation of analogs that are similar in structure, suggesting that, the pharmacological properties of HS-106 can be improved.
Resumo:
Purpose: There are two goals of this study. The first goal of this study is to investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment among a unique cohort of early stage breast cancer patients who received the single-dose preoperative radiotherapy. The second goal of this study is to investigate the clinical feasibility of using classic texture features as potential biomarkers which are supplementary to regional apparent diffusion coefficient in gynecological cancer radiotherapy response assessment.
Methods and Materials: For the breast cancer study, 15 patients with early stage breast cancer were enrolled in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE-MRI scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm2/s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T1-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (Ktrans) and kep were analyzed using the two-compartment Tofts pharmacokinetic model. For pharmacokinetic parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction.
For the gynecological cancer study, 12 female patients with gynecologic cancer treated with fractionated external beam radiotherapy (EBRT) combined with high dose rate (HDR) intracavitary brachytherapy were studied. Each patient first received EBRT treatment followed by five fractions of HDR treatment. Before EBRT and before each fraction of brachytherapy, Diffusion Weighted MRI (DWI-MRI) and CT scans were acquired. DWI scans were acquired in sagittal plane utilizing a spin-echo echo-planar imaging sequence with weighting factors of b = 500 s/mm2 and b = 1000 s/mm2, one set of images of b = 0 s/mm2 were also acquired. ADC maps were calculated using linear least-square fitting method. Distributed diffusion coefficient (DDC) maps and stretching parameter α were calculated. For ADC and DDC maps, 33 classic texture features were generated utilizing the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from high-risk clinical target volume (HR-CTV). Wilcoxon signed-rank statistics test was applied to determine the significance of each feature’s numerical value change after radiotherapy. Significance level was set to 0.05 with multi-comparison correction if applicable.
Results: For the breast cancer study, regarding ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of Ktrans and 33 features of kep changed significantly.
For the gynecological cancer study, regarding ADC maps, 28 out of 33 HR-CTV texture features showed significant changes after the EBRT treatment. 28 out of 33 HR-CTV texture features indicated significant changes after HDR treatments. The texture features that indicated significant changes after HDR treatments are the same as those after EBRT treatment. 28 out of 33 HR-CTV texture features showed significant changes after whole radiotherapy treatment process. The texture features that indicated significant changes for the whole treatment process are the same as those after HDR treatments.
Conclusion: Initial results indicate that certain classic texture features are sensitive to radiation-induced changes. Classic texture features with significant numerical changes can be used in monitoring radiotherapy effect. This might suggest that certain texture features might be used as biomarkers which are supplementary to ADC and DDC for assessment of radiotherapy response in breast cancer and gynecological cancer.
Resumo:
CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.
microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.
To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.
A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.
Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.