3 resultados para EXCITED-STATE INTERACTIONS
em Duke University
Resumo:
Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.
Resumo:
What role do state party organizations play in twenty-first century American politics? What is the nature of the relationship between the state and national party organizations in contemporary elections? These questions frame the three studies presented in this dissertation. More specifically, I examine the organizational development of the state party organizations and the strategic interactions and connections between the state and national party organizations in contemporary elections.
In the first empirical chapter, I argue that the Internet Age represents a significant transitional period for state party organizations. Using data collected from surveys of state party leaders, this chapter reevaluates and updates existing theories of party organizational strength and demonstrates the importance of new indicators of party technological capacity to our understanding of party organizational development in the early twenty-first century. In the second chapter, I ask whether the national parties utilize different strategies in deciding how to allocate resources to state parties through fund transfers and through the 50-state-strategy party-building programs that both the Democratic and Republican National Committees advertised during the 2010 elections. Analyzing data collected from my 2011 state party survey and party-fund-transfer data collected from the Federal Election Commission, I find that the national parties considered a combination of state and national electoral concerns in directing assistance to the state parties through their 50-state strategies, as opposed to the strict battleground-state strategy that explains party fund transfers. In my last chapter, I examine the relationships between platforms issued by Democratic and Republican state and national parties and the strategic considerations that explain why state platforms vary in their degree of similarity to the national platform. I analyze an extensive platform dataset, using cluster analysis and document similarity measures to compare platform content across the 1952 to 2014 period. The analysis shows that, as a group, Democratic and Republican state platforms exhibit greater intra-party homogeneity and inter-party heterogeneity starting in the early 1990s, and state-national platform similarity is higher in states that are key players in presidential elections, among other factors. Together, these three studies demonstrate the significance of the state party organizations and the state-national party partnership in contemporary politics.
Resumo:
The accurate description of ground and electronic excited states is an important and challenging topic in quantum chemistry. The pairing matrix fluctuation, as a counterpart of the density fluctuation, is applied to this topic. From the pairing matrix fluctuation, the exact electron correlation energy as well as two electron addition/removal energies can be extracted. Therefore, both ground state and excited states energies can be obtained and they are in principle exact with a complete knowledge of the pairing matrix fluctuation. In practice, considering the exact pairing matrix fluctuation is unknown, we adopt its simple approximation --- the particle-particle random phase approximation (pp-RPA) --- for ground and excited states calculations. The algorithms for accelerating the pp-RPA calculation, including spin separation, spin adaptation, as well as an iterative Davidson method, are developed. For ground states correlation descriptions, the results obtained from pp-RPA are usually comparable to and can be more accurate than those from traditional particle-hole random phase approximation (ph-RPA). For excited states, the pp-RPA is able to describe double, Rydberg, and charge transfer excitations, which are challenging for conventional time-dependent density functional theory (TDDFT). Although the pp-RPA intrinsically cannot describe those excitations excited from the orbitals below the highest occupied molecular orbital (HOMO), its performances on those single excitations that can be captured are comparable to TDDFT. The pp-RPA for excitation calculation is further applied to challenging diradical problems and is used to unveil the nature of the ground and electronic excited states of higher acenes. The pp-RPA and the corresponding Tamm-Dancoff approximation (pp-TDA) are also applied to conical intersections, an important concept in nonadiabatic dynamics. Their good description of the double-cone feature of conical intersections is in sharp contrast to the failure of TDDFT. All in all, the pairing matrix fluctuation opens up new channel of thinking for quantum chemistry, and the pp-RPA is a promising method in describing ground and electronic excited states.