7 resultados para EPR, soft matter

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

First-order transitions of system where both lattice site occupancy and lattice spacing fluctuate, such as cluster crystals, cannot be efficiently studied by traditional simulation methods, which necessarily fix one of these two degrees of freedom. The difficulty, however, can be surmounted by the generalized [N]pT ensemble [J. Chem. Phys. 136, 214106 (2012)]. Here we show that histogram reweighting and the [N]pT ensemble can be used to study an isostructural transition between cluster crystals of different occupancy in the generalized exponential model of index 4 (GEM-4). Extending this scheme to finite-size scaling studies also allows us to accurately determine the critical point parameters and to verify that it belongs to the Ising universality class.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.