4 resultados para EC03-1759
em Duke University
Resumo:
Population introduction is an important tool for ecosystem restoration. However, before introductions should be conducted, it is important to evaluate the genetic, phenotypic and ecological suitability of possible replacement populations. Careful genetic analysis is particularly important if it is suspected that the extirpated population was unique or genetically divergent. On the island of Martha's Vineyard, Massachusetts, the introduction of greater prairie chickens (Tympanuchus cupido pinnatus) to replace the extinct heath hen (T. cupido cupido) is being considered as part of an ecosystem restoration project. Martha's Vineyard was home to the last remaining heath hen population until its extinction in 1932. We conducted this study to aid in determining the suitability of greater prairie chickens as a possible replacement for the heath hen. We examined mitochondrial control region sequences from extant populations of all prairie grouse species (Tympanuchus) and from museum skin heath hen specimens. Our data suggest that the Martha's Vineyard heath hen population represents a divergent mitochondrial lineage. This result is attributable either to a long period of geographical isolation from other prairie grouse populations or to a population bottleneck resulting from human disturbance. The mtDNA diagnosability of the heath hen contrasts with the network of mtDNA haplotypes of other prairie grouse (T. cupido attwateri, T. pallidicinctus and T. phasianellus), which do not form distinguishable mtDNA groupings. Our findings suggest that the Martha's Vineyard heath hen was more genetically isolated than are current populations of prairie grouse and place the emphasis for future research on examining prairie grouse adaptations to different habitat types to assess ecological exchangeability between heath hens and greater prairie chickens.
Resumo:
Diarthrodial joints are well suited to intra-articular injection, and the local delivery of therapeutics in this fashion brings several potential advantages to the treatment of a wide range of arthropathies. Possible benefits over systemic delivery include increased bioavailability, reduced systemic exposure, fewer adverse events, and lower total drug costs. Nevertheless, intra-articular therapy is challenging because of the rapid egress of injected materials from the joint space; this elimination is true of both small molecules, which exit via synovial capillaries, and of macromolecules, which are cleared by the lymphatic system. In general, soluble materials have an intra-articular dwell time measured only in hours. Corticosteroids and hyaluronate preparations constitute the mainstay of FDA-approved intra-articular therapeutics. Recombinant proteins, autologous blood products and analgesics have also found clinical use via intra-articular delivery. Several alternative approaches, such as local delivery of cell and gene therapy, as well as the use of microparticles, liposomes, and modified drugs, are in various stages of preclinical development.
Resumo:
Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.
Resumo:
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.