6 resultados para Downstream Protection Values
em Duke University
Resumo:
Abstract
Continuous variable is one of the major data types collected by the survey organizations. It can be incomplete such that the data collectors need to fill in the missingness. Or, it can contain sensitive information which needs protection from re-identification. One of the approaches to protect continuous microdata is to sum them up according to different cells of features. In this thesis, I represents novel methods of multiple imputation (MI) that can be applied to impute missing values and synthesize confidential values for continuous and magnitude data.
The first method is for limiting the disclosure risk of the continuous microdata whose marginal sums are fixed. The motivation for developing such a method comes from the magnitude tables of non-negative integer values in economic surveys. I present approaches based on a mixture of Poisson distributions to describe the multivariate distribution so that the marginals of the synthetic data are guaranteed to sum to the original totals. At the same time, I present methods for assessing disclosure risks in releasing such synthetic magnitude microdata. The illustration on a survey of manufacturing establishments shows that the disclosure risks are low while the information loss is acceptable.
The second method is for releasing synthetic continuous micro data by a nonstandard MI method. Traditionally, MI fits a model on the confidential values and then generates multiple synthetic datasets from this model. Its disclosure risk tends to be high, especially when the original data contain extreme values. I present a nonstandard MI approach conditioned on the protective intervals. Its basic idea is to estimate the model parameters from these intervals rather than the confidential values. The encouraging results of simple simulation studies suggest the potential of this new approach in limiting the posterior disclosure risk.
The third method is for imputing missing values in continuous and categorical variables. It is extended from a hierarchically coupled mixture model with local dependence. However, the new method separates the variables into non-focused (e.g., almost-fully-observed) and focused (e.g., missing-a-lot) ones. The sub-model structure of focused variables is more complex than that of non-focused ones. At the same time, their cluster indicators are linked together by tensor factorization and the focused continuous variables depend locally on non-focused values. The model properties suggest that moving the strongly associated non-focused variables to the side of focused ones can help to improve estimation accuracy, which is examined by several simulation studies. And this method is applied to data from the American Community Survey.
Resumo:
Both clinical experience and a growing medical literature indicate that some persons who have been exposed to human immunodeficiency virus (HIV) infection remain uninfected. Although in some instances this may represent good fortune, cohorts of uninfected persons have been reported who are considered at high risk for infection. In these cohorts a variety of characteristics have been proposed as mediating protection, but to date only the 32–base pair deletion in the chemokine (C‐C motif) receptor 5 gene, which results in complete failure of cell surface expression of this coreceptor, has been associated with high‐level protection from HIV infection. With this in mind, there are probably many other factors that may individually or in combination provide some level of protection from acquisition of HIV infection. Because some of these factors are probably incompletely protective or inconsistently active, identifying them with confidence will be difficult. Nonetheless, clarifying the determinants of protection against HIV infection is a high priority that will require careful selection of high‐risk uninfected cohorts, who should undergo targeted studies of plausible mediators and broad screening for unexpected determinants of protection.
Resumo:
Light is a universal signal perceived by organisms, including fungi, in which light regulates common and unique biological processes depending on the species. Previous research has established that conserved proteins, originally called White collar 1 and 2 from the ascomycete Neurospora crassa, regulate UV/blue light sensing. Homologous proteins function in distant relatives of N. crassa, including the basidiomycetes and zygomycetes, which diverged as long as a billion years ago. Here we conducted microarray experiments on the basidiomycete fungus Cryptococcus neoformans to identify light-regulated genes. Surprisingly, only a single gene was induced by light above the commonly used twofold threshold. This gene, HEM15, is predicted to encode a ferrochelatase that catalyses the final step in haem biosynthesis from highly photoreactive porphyrins. The C. neoformans gene complements a Saccharomyces cerevisiae hem15Delta strain and is essential for viability, and the Hem15 protein localizes to mitochondria, three lines of evidence that the gene encodes ferrochelatase. Regulation of HEM15 by light suggests a mechanism by which bwc1/bwc2 mutants are photosensitive and exhibit reduced virulence. We show that ferrochelatase is also light-regulated in a white collar-dependent fashion in N. crassa and the zygomycete Phycomyces blakesleeanus, indicating that ferrochelatase is an ancient target of photoregulation in the fungal kingdom.
Resumo:
From 2008-2012, a dramatic upsurge in incidents of maritime piracy in the Western Indian Ocean led to renewed global attention to this region: including the deployment of multi national naval patrols, attempts to prosecute suspected pirates, and the development of financial interdiction systems to track and stop the flow of piracy ransoms. Largely seen as the maritime ripple effect of anarchy on land, piracy has been slotted into narratives of state failure and problems of governance and criminality in this region.
This view fails to account for a number of factors that were crucial in making possible the unprecedented rise of Somali piracy and its contemporary transformation. Instead of an emphasis on failed states and crises of governance, my dissertation approaches maritime piracy within a historical and regional configuration of actors and relationships that precede this round of piracy and will outlive it. The story I tell in this work begins before the contemporary upsurge of piracy and closes with a foretaste of the itineraries beyond piracy that are being crafted along the East African coast.
Beginning in the world of port cities in the long nineteenth century, my dissertation locates piracy and the relationship between trade, plunder, and state formation within worlds of exchange, including European incursions into this oceanic space. Scholars of long distance trade have emphasized the sociality engendered through commerce and the centrality of idioms of trust and kinship in structuring mercantile relationships across oceanic divides. To complement this scholarship, my work brings into view the idiom of protection: as a claim to surety, a form of tax, and a moral claim to authority in trans-regional commerce.
To build this theory of protection, my work combines archival sources with a sustained ethnographic engagement in coastal East Africa, including the pirate ports of Northern Somalia, and focuses on the interaction between land-based pastoral economies and maritime trade. This connection between land and sea calls attention to two distinct visions of the ocean: one built around trade and mobility and the other built on the ocean as a space of extraction and sovereignty. Moving between historical encounters over trade and piracy and the development of a national maritime economy during the height of the Somali state, I link the contemporary upsurge of maritime piracy to the confluence of these two conceptualizations of the ocean and the ideas of capture, exchange, and redistribution embedded within them.
The second section of my dissertation reframes piracy as an economy of protection and a form of labor implicated within other legal and illegal economies in the Indian Ocean. Based on extensive field research, including interviews with self-identified pirates, I emphasize the forms of labor, value, and risk that characterize piracy as an economy of protection. The final section of my dissertation focuses on the diverse international, regional, and local responses to maritime piracy. This section locates the response to piracy within a post-Cold War and post-9/11 global order and longer attempts to regulate and assuage the risks of maritime trade. Through an ethnographic focus on maritime insurance markets, navies, and private security contractors, I analyze the centrality of protection as a calculation of risk and profit in the contemporary economy of counter-piracy.
Through this focus on longer histories of trade, empire, and regulation my dissertation reframes maritime piracy as an economy of protection straddling boundaries of land and sea, legality and illegality, law and economy, and history and anthropology.
Resumo:
As a psychological principle, the golden rule represents an ethic of universal empathic concern. It is, surprisingly, present in the sacred texts of virtually all religions, and in philosophical works across eras and continents. Building on the literature demonstrating a positive impact of prosocial behavior on well-being, the present study investigates the psychological function of universal empathic concern in Indian Hindus, Christians, Muslims and Sikhs.
I develop a measure of the centrality of the golden rule-based ethic, within an individual’s understanding of his or her religion, that is applicable to all theistic religions. I then explore the consistency of its relationships with psychological well-being and other variables across religious groups.
Results indicate that this construct, named Moral Concern Religious Focus, can be reliably measured in disparate religious groups, and consistently predicts well-being across them. With measures of Intrinsic, Extrinsic and Quest religious orientations in the model, only Moral Concern and religiosity predict well-being. Moral Concern alone mediates the relationship between religiosity and well-being, and explains more variance in well-being than religiosity alone. The relationship between Moral Concern and well-being is mediated by increased preference for prosocial values, more satisfying interpersonal relationships, and greater meaning in life. In addition, across religious groups Moral Concern is associated with better self-reported physical and mental health, and more compassionate attitudes toward oneself and others.
Two additional types of religious focus are identified: Personal Gain, representing the motive to use religion to improve one’s life, and Relationship with God. Personal Gain is found to predict reduced preference for prosocial values, less meaning in life, and lower quality of relationships. It is associated with greater interference of pain and physical or mental health problems with daily activities, and lower self-compassion. Relationship with God is found to be associated primarily with religious variables and greater meaning in life.
I conclude that individual differences in the centrality of the golden rule and its associated ethic of universal empathic concern may play an important role in explaining the variability in associations between religion, prosocial behavior and well-being noted in the literature.
Resumo:
CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.