3 resultados para Docosahexaenoic Acids
em Duke University
Resumo:
INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.
Resumo:
BACKGROUND: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.
Resumo:
Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.