4 resultados para Divergent Environments
em Duke University
Resumo:
Human and non-human animals tend to avoid risky prospects. If such patterns of economic choice are adaptive, risk preferences should reflect the typical decision-making environments faced by organisms. However, this approach has not been widely used to examine the risk sensitivity in closely related species with different ecologies. Here, we experimentally examined risk-sensitive behaviour in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), closely related species whose distinct ecologies are thought to be the major selective force shaping their unique behavioural repertoires. Because chimpanzees exploit riskier food sources in the wild, we predicted that they would exhibit greater tolerance for risk in choices about food. Results confirmed this prediction: chimpanzees significantly preferred the risky option, whereas bonobos preferred the fixed option. These results provide a relatively rare example of risk-prone behaviour in the context of gains and show how ecological pressures can sculpt economic decision making.
Resumo:
The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements.
Resumo:
Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.
Resumo:
© 2015 IEEE.In virtual reality applications, there is an aim to provide real time graphics which run at high refresh rates. However, there are many situations in which this is not possible due to simulation or rendering issues. When running at low frame rates, several aspects of the user experience are affected. For example, each frame is displayed for an extended period of time, causing a high persistence image artifact. The effect of this artifact is that movement may lose continuity, and the image jumps from one frame to another. In this paper, we discuss our initial exploration of the effects of high persistence frames caused by low refresh rates and compare it to high frame rates and to a technique we developed to mitigate the effects of low frame rates. In this technique, the low frame rate simulation images are displayed with low persistence by blanking out the display during the extra time such image would be displayed. In order to isolate the visual effects, we constructed a simulator for low and high persistence displays that does not affect input latency. A controlled user study comparing the three conditions for the tasks of 3D selection and navigation was conducted. Results indicate that the low persistence display technique may not negatively impact user experience or performance as compared to the high persistence case. Directions for future work on the use of low persistence displays for low frame rate situations are discussed.