4 resultados para Dispersive Estimates
em Duke University
Resumo:
The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude-Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.
Resumo:
While numerous studies find that deep-saline sandstone aquifers in the United States could store many decades worth of the nation's current annual CO 2 emissions, the likely cost of this storage (i.e. the cost of storage only and not capture and transport costs) has been harder to constrain. We use publicly available data of key reservoir properties to produce geo-referenced rasters of estimated storage capacity and cost for regions within 15 deep-saline sandstone aquifers in the United States. The rasters reveal the reservoir quality of these aquifers to be so variable that the cost estimates for storage span three orders of magnitude and average>$100/tonne CO 2. However, when the cost and corresponding capacity estimates in the rasters are assembled into a marginal abatement cost curve (MACC), we find that ~75% of the estimated storage capacity could be available for<$2/tonne. Furthermore, ~80% of the total estimated storage capacity in the rasters is concentrated within just two of the aquifers-the Frio Formation along the Texas Gulf Coast, and the Mt. Simon Formation in the Michigan Basin, which together make up only ~20% of the areas analyzed. While our assessment is not comprehensive, the results suggest there should be an abundance of low-cost storage for CO 2 in deep-saline aquifers, but a majority of this storage is likely to be concentrated within specific regions of a smaller number of these aquifers. © 2011 Elsevier B.V.
Resumo:
The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is 403 million US dollars (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of 802 million US dollars (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation.
Resumo:
The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.