2 resultados para Digital aerial images
em Duke University
Resumo:
Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest due to the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome, and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3-D computerized tomography (CT) images of intact rat brains implanted with metal electrode bundles to a Magnetic Resonance Imaging Histology (MRH) Atlas. Our method allows accurate visualization of each electrode bundle's trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by "re-slicing" the images along different planes of view. Further, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience.
Resumo:
Prospective estimation of patient CT organ dose prior to examination can help technologist adjust CT scan settings to reduce radiation dose to patient while maintaining certain image quality. One possible way to achieve this is matching patient to digital models precisely. In previous work, patient matching was performed manually by matching the trunk height which was defined as the distance from top of clavicle to bottom of pelvis. However, this matching method is time consuming and impractical in scout images where entire trunk is not included. Purpose of this work was to develop an automatic patient matching strategy and verify its accuracy.