5 resultados para Diffusion of Internet
em Duke University
Resumo:
While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid.
Resumo:
The problem of social diffusion has animated sociological thinking on topics ranging from the spread of an idea, an innovation or a disease, to the foundations of collective behavior and political polarization. While network diffusion has been a productive metaphor, the reality of diffusion processes is often muddier. Ideas and innovations diffuse differently from diseases, but, with a few exceptions, the diffusion of ideas and innovations has been modeled under the same assumptions as the diffusion of disease. In this dissertation, I develop two new diffusion models for "socially meaningful" contagions that address two of the most significant problems with current diffusion models: (1) that contagions can only spread along observed ties, and (2) that contagions do not change as they spread between people. I augment insights from these statistical and simulation models with an analysis of an empirical case of diffusion - the use of enterprise collaboration software in a large technology company. I focus the empirical study on when people abandon innovations, a crucial, and understudied aspect of the diffusion of innovations. Using timestamped posts, I analyze when people abandon software to a high degree of detail.
To address the first problem, I suggest a latent space diffusion model. Rather than treating ties as stable conduits for information, the latent space diffusion model treats ties as random draws from an underlying social space, and simulates diffusion over the social space. Theoretically, the social space model integrates both actor ties and attributes simultaneously in a single social plane, while incorporating schemas into diffusion processes gives an explicit form to the reciprocal influences that cognition and social environment have on each other. Practically, the latent space diffusion model produces statistically consistent diffusion estimates where using the network alone does not, and the diffusion with schemas model shows that introducing some cognitive processing into diffusion processes changes the rate and ultimate distribution of the spreading information. To address the second problem, I suggest a diffusion model with schemas. Rather than treating information as though it is spread without changes, the schema diffusion model allows people to modify information they receive to fit an underlying mental model of the information before they pass the information to others. Combining the latent space models with a schema notion for actors improves our models for social diffusion both theoretically and practically.
The empirical case study focuses on how the changing value of an innovation, introduced by the innovations' network externalities, influences when people abandon the innovation. In it, I find that people are least likely to abandon an innovation when other people in their neighborhood currently use the software as well. The effect is particularly pronounced for supervisors' current use and number of supervisory team members who currently use the software. This case study not only points to an important process in the diffusion of innovation, but also suggests a new approach -- computerized collaboration systems -- to collecting and analyzing data on organizational processes.
Resumo:
The Veterans Health Administration (VHA) in the Department of Veteran Affairs (VA) has emerged as a national and international leader in the delivery and research of telehealth-based treatment. Several unique characteristics of care in VA settings intersect to create an ideal environment for telehealth modalities and research. However, the value of telehealth experience and initiatives in VA settings is limited if telehealth strategies cannot be widely exported to other public or private systems. Whereas a hierarchical organization, such as VA, can innovate and fund change relatively quickly based on provider and patient preferences and a growing knowledge base, other health provider organizations and third-party payers may likely require replicable scientific findings over time before incremental investments will be made to create infrastructure, reform regulatory barriers, and amend laws to accommodate expansion of telehealth modalities. Accordingly, large-scale scientifically rigorous telehealth research in VHA settings is essential not only to investigate the efficacy of existing and future telehealth practices in VHA, but also to hasten the development of telehealth infrastructure in private and other public health settings. We propose an expanded partnership between the VA, NIH, and other funding agencies to investigate creative and pragmatic uses of telehealth technology. To this end, we identify six specific areas of research we believe to be particularly relevant to the efficient development of telehealth modalities in civilian and military contexts outside VHA.
Resumo:
Market failures associated with environmental pollution interact with market failures associated with the innovation and diffusion of new technologies. These combined market failures provide a strong rationale for a portfolio of public policies that foster emissions reduction as well as the development and adoption of environmentally beneficial technology. Both theory and empirical evidence suggest that the rate and direction of technological advance is influenced by market and regulatory incentives, and can be cost-effectively harnessed through the use of economic-incentive based policy. In the presence of weak or nonexistent environmental policies, investments in the development and diffusion of new environmentally beneficial technologies are very likely to be less than would be socially desirable. Positive knowledge and adoption spillovers and information problems can further weaken innovation incentives. While environmental technology policy is fraught with difficulties, a long-term view suggests a strategy of experimenting with policy approaches and systematically evaluating their success. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Introduction and Aims: In recent years, unprecedented levels of Internet access and the widespread growth of emergent communication technologies have resulted in significantly greater population access for substance use researchers. Despite the research potential of such technologies, the use of the Internet to recruit individuals for participation in event-level research has been limited. The purpose of this paper is to provide a brief account of the methods and results from an online daily diary study of alcohol use. Design and Methods: Participants were recruited using Amazon's Mechanical Turk. Eligible participants completed a brief screener assessing demographics and health behaviours, with a subset of individuals subsequently recruited to participate in a 2 week daily diary study of alcohol use. Results: Multilevel models of the daily alcohol data derived from the Mechanical Turk sample (n=369) replicated several findings commonly reported in daily diary studies of alcohol use. Discussion and Conclusions: Results demonstrate that online participant recruitment and survey administration can be a fruitful method for conducting daily diary alcohol research. © 2014 Australasian Professional Society on Alcohol and other Drugs.