4 resultados para Differential equations, Partial.
em Duke University
Resumo:
The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws.
Resumo:
Numerical approximation of the long time behavior of a stochastic di.erential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein's method is indicated. Some practical implications of the results are discussed. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Resumo:
In perifusion cell cultures, the culture medium flows continuously through a chamber containing immobilized cells and the effluent is collected at the end. In our main applications, gonadotropin releasing hormone (GnRH) or oxytocin is introduced into the chamber as the input. They stimulate the cells to secrete luteinizing hormone (LH), which is collected in the effluent. To relate the effluent LH concentration to the cellular processes producing it, we develop and analyze a mathematical model consisting of coupled partial differential equations describing the intracellular signaling and the movement of substances in the cell chamber. We analyze three different data sets and give cellular mechanisms that explain the data. Our model indicates that two negative feedback loops, one fast and one slow, are needed to explain the data and we give their biological bases. We demonstrate that different LH outcomes in oxytocin and GnRH stimulations might originate from different receptor dynamics. We analyze the model to understand the influence of parameters, like the rate of the medium flow or the fraction collection time, on the experimental outcomes. We investigate how the rate of binding and dissociation of the input hormone to and from its receptor influence its movement down the chamber. Finally, we formulate and analyze simpler models that allow us to predict the distortion of a square pulse due to hormone-receptor interactions and to estimate parameters using perifusion data. We show that in the limit of high binding and dissociation the square pulse moves as a diffusing Gaussian and in this limit the biological parameters can be estimated.