4 resultados para Diet-induced Thermogenesis

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-traumatic arthritis (PTA) is arthritis that develops following joint injury, including meniscus and ligament tears. Current treatments for PTA range from over-the-counter medication to knee replacement; however, in the presence of obesity, the levels of pro-inflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α,) are more elevated than in non-obese individuals. The role of fatty acids, obesity, and PTA has been examined, with omega-3 fatty acids showing promise as an anti-inflammatory after injury due to its ability to suppress IL-1 and TNF-α. Due to the difficulty in switching patients’ diets, an alternative solution to increasing omega-3 levels needs to be developed. The Fat-1 enzyme, an omega-3 desaturase that has the ability to convert omega-6 to omega-3 fatty acids, may be a good target for increasing the omega-3 levels in the body.

In the first study, we examined whether Fat-1 transgenic mice on a high-fat diet would exhibit lower levels of PTA degeneration following the destabilization of the medial meniscus (DMM). Both male and female Fat-1 and wild-type (WT) littermates were put on either a control diet (10% fat) or an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery. Arthritic changes were examined 12 weeks post-surgery. Fat-1 mice on both the control and high-fat diet showed protection from PTA-related degeneration, while WT mice showed severe arthritic changes. These findings suggest that the omega-6/omega-3 ratio plays an important role in reducing PTA following injury, and demonstrates the potential therapeutic benefit of the Fat-1 enzyme in preventing PTA in both normal and obese patients following acute injury.

Following this, we needed to establish a translatable delivery mechanism for getting the Fat-1 enzyme, which is not present in mammalian cells, into patients. In the second study, we examined whether anti-inflammatory gene delivery of the Fat-1 enzyme would prevent PTA following DMM surgery. In vitro testing of both lentivirus (LV) and adeno-associated virus (AAV) was completed to confirm functionality and conformation of the Fat-1 enzyme after transduction. Male WT mice were placed on an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery; either local or systemic AAV injections of the Fat-1 enzyme or Luciferase, a vector control, were given immediately following surgery. 12 weeks post-surgery, arthritic changes were assessed. The systemic administration of the Fat-1 enzyme showed protection from synovial inflammation and osteophyte formation, while administration of Luciferase did not confer protection. These findings suggest the utility of gene therapy to deliver the Fat-1 enzyme, which has potential as a therapeutic for injured obese patients for the prevention of PTA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Early-life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A3 receptor in cardiovascular diseases is not clear. In this study, gene-modified mice were used to investigate the hypothesis that lack of A3 signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX-HS) in mice. METHODS AND RESULTS: Wild-type (A3 (+/+)) mice subjected to UNX-HS developed hypertension compared with controls (mean arterial pressure 106±3 versus 82±3 mm Hg; P<0.05) and displayed an impaired metabolic phenotype (eg, increased adiposity, reduced glucose tolerance, hyperinsulinemia). These changes were associated with both cardiac hypertrophy and fibrosis together with renal injuries and proteinuria. All of these pathological hallmarks were significantly attenuated in the A3 (-/-) mice. Mechanistically, absence of A3 receptors protected from UNX-HS-associated increase in renal NADPH oxidase activity and Nox2 expression. In addition, circulating cytokines including interleukins 1β, 6, 12, and 10 were increased in A3 (+/+) following UNX-HS, but these cytokines were already elevated in naïve A3 (-/-) mice and did not change following UNX-HS. CONCLUSIONS: Reduction in nephron number combined with chronic HS intake is associated with oxidative stress, chronic inflammation, and development of hypertension in mice. Absence of adenosine A3 receptor signaling was strongly protective in this novel mouse model of renal and cardiovascular disease.