3 resultados para Dicamba and 2,4-D
em Duke University
Resumo:
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of complicated skin and skin-structure infection (cSSSI). Increasing antimicrobial resistance in cSSSI has led to a need for new safe and effective therapies. Ceftaroline was evaluated as treatment for cSSSI in 2 identical phase 3 clinical trials, the pooled analysis of which is presented here. The primary objective of each trial was to determine the noninferiority of the clinical cure rate achieved with ceftaroline monotherapy, compared with that achieved with vancomycin plus aztreonam combination therapy, in the clinically evaluable (CE) and modified intent-to-treat (MITT) patient populations. METHODS: Adult patients with cSSSI requiring intravenous therapy received ceftaroline (600 mg every 12 h) or vancomycin plus aztreonam (1 g each every 12 h) for 5-14 days. RESULTS: Of 1378 patients enrolled in both trials, 693 received ceftaroline and 685 received vancomycin plus aztreonam. Baseline characteristics of the treatment groups were comparable. Clinical cure rates were similar for ceftaroline and vancomycin plus aztreonam in the CE (91.6% vs 92.7%) and MITT (85.9% vs 85.5%) populations, respectively, as well as in patients infected with MRSA (93.4% vs 94.3%). The rates of adverse events, discontinuations because of an adverse event, serious adverse events, and death also were similar between treatment groups. CONCLUSIONS: Ceftaroline achieved high clinical cure rates, was efficacious against cSSSI caused by MRSA and other common cSSSI pathogens, and was well tolerated, with a safety profile consistent with the cephalosporin class. Ceftaroline has the potential to provide a monotherapy alternative for the treatment of cSSSI. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT00424190 for CANVAS 1 and NCT00423657 for CANVAS 2.
Resumo:
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.
Resumo:
The two widely coexpressed isoforms of beta-arrestin (termed beta arrestin 1 and 2) are highly similar in amino acid sequence. The beta-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of beta-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the beta-arrestins (beta arr1-KO and beta arr2-KO) or both (beta arr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the beta(2)-adrenergic receptor (beta(2)-AR) and the angiotensin II type 1A receptor (AT(1A)-R). Both beta arr1-KO and beta arr2-KO cells showed similar impairment in agonist-stimulated beta(2)-AR and AT(1A)-R desensitization, when compared with their WT control cells, and the beta arr1/2-KO cells were even further impaired. Sequestration of the beta(2)-AR in the beta arr2-KO cells was compromised significantly (87% reduction), whereas in the beta arr1-KO cells it was not. Agonist-stimulated internalization of the AT(1A)-R was only slightly reduced in the beta arr1-KO but was unaffected in the beta arr2-KO cells. In the beta arr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two beta-arrestins to sequester the beta(2)-AR revealed beta-arrestin 2 to be 100-fold more potent than beta-arrestin 1. Down-regulation of the beta(2)-AR was also prevented in the beta arr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two beta-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.