26 resultados para Diagnostic imaging Digital techniques
em Duke University
Resumo:
BACKGROUND: One year after the introduction of Information and Communication Technology (ICT) to support diagnostic imaging at our hospital, clinicians had faster and better access to radiology reports and images; direct access to Computed Tomography (CT) reports in the Electronic Medical Record (EMR) was particularly popular. The objective of this study was to determine whether improvements in radiology reporting and clinical access to diagnostic imaging information one year after the ICT introduction were associated with a reduction in the length of patients' hospital stays (LOS). METHODS: Data describing hospital stays and diagnostic imaging were collected retrospectively from the EMR during periods of equal duration before and one year after the introduction of ICT. The post-ICT period was chosen because of the documented improvement in clinical access to radiology results during that period. The data set was randomly split into an exploratory part used to establish the hypotheses, and a confirmatory part. The data was used to compare the pre-ICT and post-ICT status, but also to compare differences between groups. RESULTS: There was no general reduction in LOS one year after ICT introduction. However, there was a 25% reduction for one group - patients with CT scans. This group was heterogeneous, covering 445 different primary discharge diagnoses. Analyses of subgroups were performed to reduce the impact of this divergence. CONCLUSION: Our results did not indicate that improved access to radiology results reduced the patients' LOS. There was, however, a significant reduction in LOS for patients undergoing CT scans. Given the clinicians' interest in CT reports and the results of the subgroup analyses, it is likely that improved access to CT reports contributed to this reduction.
Resumo:
BACKGROUND: Traditional imaging techniques for the localization and monitoring of bacterial infections, although reasonably sensitive, suffer from a lack of specificity. This is particularly true for musculoskeletal infections. Bacteria possess a thymidine kinase (TK) whose substrate specificity is distinct from that of the major human TK. The substrate specificity difference has been exploited to develop a new imaging technique that can detect the presence of viable bacteria. METHODOLOGY/PRINCIPAL FINDINGS: Eight subjects with suspected musculoskeletal infections and one healthy control were studied by a combination of [(124)I]FIAU-positron emission tomography and CT ([(124)I]FIAU-PET/CT). All patients with proven musculoskeletal infections demonstrated positive [(124)I]FIAU-PET/CT signals in the sites of concern at two hours after radiopharmaceutical administration. No adverse reactions with FIAU were observed. CONCLUSIONS/SIGNIFICANCE: [(124)I]FIAU-PET/CT is a promising new method for imaging bacterial infections.
Resumo:
As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.
Resumo:
The kidney's major role in filtration depends on its high blood flow, concentrating mechanisms, and biochemical activation. The kidney's greatest strengths also lead to vulnerability for drug-induced nephrotoxicity and other renal injuries. The current standard to diagnose renal injuries is with a percutaneous renal biopsy, which can be biased and insufficient. In one particular case, biopsy of a kidney with renal cell carcinoma can actually initiate metastasis. Tools that are sensitive and specific to detect renal disease early are essential, especially noninvasive diagnostic imaging. While other imaging modalities (ultrasound and x-ray/CT) have their unique advantages and disadvantages, MRI has superb soft tissue contrast without ionizing radiation. More importantly, there is a richness of contrast mechanisms in MRI that has yet to be explored and applied to study renal disease.
The focus of this work is to advance preclinical imaging tools to study the structure and function of the renal system. Studies were conducted in normal and disease models to understand general renal physiology as well as pathophysiology. This dissertation is separated into two parts--the first is the identification of renal architecture with ex vivo MRI; the second is the characterization of renal dynamics and function with in vivo MRI. High resolution ex vivo imaging provided several opportunities including: 1) identification of fine renal structures, 2) implementation of different contrast mechanisms with several pulse sequences and reconstruction methods, 3) development of image-processing tools to extract regions and structures, and 4) understanding of the nephron structures that create MR contrast and that are important for renal physiology. The ex vivo studies allowed for understanding and translation to in vivo studies. While the structure of this dissertation is organized by individual projects, the goal is singular: to develop magnetic resonance imaging biomarkers for renal system.
The work presented here includes three ex vivo studies and two in vivo studies:
1) Magnetic resonance histology of age-related nephropathy in sprague dawley.
2) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.
3) Susceptibility tensor imaging of the kidney and its microstructural underpinnings.
4) 4D MRI of renal function in the developing mouse.
5) 4D MRI of polycystic kidneys in rapamycin treated Glis3-deficient mice.
Resumo:
BACKGROUND: Diagnostic imaging represents the fastest growing segment of costs in the US health system. This study investigated the cost-effectiveness of alternative diagnostic approaches to meniscus tears of the knee, a highly prevalent disease that traditionally relies on MRI as part of the diagnostic strategy. PURPOSE: To identify the most efficient strategy for the diagnosis of meniscus tears. STUDY DESIGN: Economic and decision analysis; Level of evidence, 1. METHODS: A simple-decision model run as a cost-utility analysis was constructed to assess the value added by MRI in various combinations with patient history and physical examination (H&P). The model examined traumatic and degenerative tears in 2 distinct settings: primary care and orthopaedic sports medicine clinic. Strategies were compared using the incremental cost-effectiveness ratio (ICER). RESULTS: In both practice settings, H&P alone was widely preferred for degenerative meniscus tears. Performing MRI to confirm a positive H&P was preferred for traumatic tears in both practice settings, with a willingness to pay of less than US$50,000 per quality-adjusted life-year. Performing an MRI for all patients was not preferred in any reasonable clinical scenario. The prevalence of a meniscus tear in a clinician's patient population was influential. For traumatic tears, MRI to confirm a positive H&P was preferred when prevalence was less than 46.7%, with H&P preferred above that. For degenerative tears, H&P was preferred until the prevalence reaches 74.2%, and then MRI to confirm a negative was the preferred strategy. In both settings, MRI to confirm positive physical examination led to more than a 10-fold lower rate of unnecessary surgeries than did any other strategy, while MRI to confirm negative physical examination led to a 2.08 and 2.26 higher rate than H&P alone in primary care and orthopaedic clinics, respectively. CONCLUSION: For all practitioners, H&P is the preferred strategy for the suspected degenerative meniscus tear. An MRI to confirm a positive H&P is preferred for traumatic tears for all practitioners. Consideration should be given to implementing alternative diagnostic strategies as well as enhancing provider education in physical examination skills to improve the reliability of H&P as a diagnostic test. CLINICAL RELEVANCE: Alternative diagnostic strategies that do not include the use of MRI may result in decreased health care costs without harm to the patient and could possibly reduce unnecessary procedures.
Resumo:
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.
Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.
Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.
Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
Resumo:
The activation parameters and the rate constants of the water-exchange reactions of Mn(III)TE-2-PyP(5+) (meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin) as cationic, Mn(III)TnHex-2-PyP(5+) (meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin) as sterically shielded cationic, and Mn(III)TSPP(3-) (meso-tetrakis(4-sulfonatophenyl)porphyrin) as anionic manganese(iii) porphyrins were determined from the temperature dependence of (17)O NMR relaxation rates. The rate constants at 298 K were obtained as 4.12 x 10(6) s(-1), 5.73 x 10(6) s(-1), and 2.74 x 10(7) s(-1), respectively. On the basis of the determined entropies of activation, an interchange-dissociative mechanism (I(d)) was proposed for the cationic complexes (DeltaS(double dagger) = approximately 0 J mol(-1) K(-1)) whereas a limiting dissociative mechanism (D) was proposed for Mn(III)TSPP(3-) complex (DeltaS(double dagger) = +79 J mol(-1) K(-1)). The obtained water exchange rate of Mn(III)TSPP(3-) corresponded well to the previously assumed value used by Koenig et al. (S. H. Koenig, R. D. Brown and M. Spiller, Magn. Reson. Med., 1987, 4, 52-260) to simulate the (1)H NMRD curves, therefore the measured value supports the theory developed for explaining the anomalous relaxivity of Mn(III)TSPP(3-) complex. A magnitude of the obtained water-exchange rate constants further confirms the suggested inner sphere electron transfer mechanism for the reactions of the two positively charged Mn(iii) porphyrins with the various biologically important oxygen and nitrogen reactive species. Due to the high biological and clinical relevance of the reactions that occur at the metal site of the studied Mn(iii) porphyrins, the determination of water exchange rates advanced our insight into their efficacy and mechanism of action, and in turn should impact their further development for both diagnostic (imaging) and therapeutic purposes.
Resumo:
This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.
Outcomes and Predictors of Mortality in Neurosurgical Patients at Mbarara Regional Referral Hospital
Resumo:
Background:
Knowing the scope of neurosurgical disease at Mbarara Hospital is critical for infrastructure planning, education and training. In this study, we aim to evaluate the neurosurgical outcomes and identify predictors of mortality in order to potentiate platforms for more effective interventions and inform future research efforts at Mbarara Hospital.
Methods:
This is retrospective chart review including patients of all ages with a neurosurgical disease or injury presenting to Mbarara Regional Referral Hospital (MRRH) between January 2012 to September 2015. Descriptive statistics were presented. A univariate analysis was used to obtain the odds ratios of mortality and 95% confidence intervals. Predictors of mortality were determined using multivariate logistic regression model.
Results:
A total of 1876 charts were reviewed. Of these, 1854 (had complete data and were?) were included in the analysis. The overall mortality rate was 12.75%; the mortality rates among all persons who underwent a neurosurgical procedure was 9.72%, and was 13.68% among those who did not undergo a neurosurgical procedure. Over 50% of patients were between 19 and 40 years old and the majority of were males (76.10%). The overall median length of stay was 5 days. Of all neurosurgical admissions, 87% were trauma patients. In comparison to mild head injury, closed head injury and intracranial hematoma patients were 5 (95% CI: 3.77, 8.26) and 2.5 times (95% CI: 1.64,3.98) more likely to die respectively. Procedure and diagnostic imaging were independent negative predictors of mortality (P <0.05). While age, ICU admission, admission GCS were positive predictors of mortality (P <0.05).
Conclusions:
The majority of hospital admissions were TBI patients, with RTIs being the most common mechanism of injury. Age, ICU admission, admission GCS, diagnostic imaging and undergoing surgery were independent predictors of mortality. Going forward, further exploration of patient characteristics is necessary to fully describe mortality outcomes and implement resource appropriate interventions that ultimately improve morbidity and mortality.
Resumo:
On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.
A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.
An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.
Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.
Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.
A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT Phantom
In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.
Resumo:
This thesis reports advances in magnetic resonance imaging (MRI), with the ultimate goal of improving signal and contrast in biomedical applications. More specifically, novel MRI pulse sequences have been designed to characterize microstructure, enhance signal and contrast in tissue, and image functional processes. In this thesis, rat brain and red bone marrow images are acquired using iMQCs (intermolecular multiple quantum coherences) between spins that are 10 μm to 500 μm apart. As an important application, iMQCs images in different directions can be used for anisotropy mapping. We investigate tissue microstructure by analyzing anisotropy mapping. At the same time, we simulated images expected from rat brain without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Besides magnitude of iMQCs, phase of iMQCs should be studied as well. The phase anisotropy maps built by our method can clearly show susceptibility information in kidneys. It may provide meaningful diagnostic information. To deeply study susceptibility, the modified-crazed sequence is developed. Combining phase data of modified-crazed images and phase data of iMQCs images is very promising to construct microstructure maps. Obviously, the phase image in all above techniques needs to be highly-contrasted and clear. To achieve the goal, algorithm tools from Susceptibility-Weighted Imaging (SWI) and Susceptibility Tensor Imaging (STI) stands out superb useful and creative in our system.
Resumo:
OBJECTIVE: The diagnosis of Alzheimer's disease (AD) remains difficult. Lack of diagnostic certainty or possible distress related to a positive result from diagnostic testing could limit the application of new testing technologies. The objective of this paper is to quantify respondents' preferences for obtaining AD diagnostic tests and to estimate the perceived value of AD test information. METHODS: Discrete-choice experiment and contingent-valuation questions were administered to respondents in Germany and the United Kingdom. Choice data were analyzed by using random-parameters logit. A probit model characterized respondents who were not willing to take a test. RESULTS: Most respondents indicated a positive value for AD diagnostic test information. Respondents who indicated an interest in testing preferred brain imaging without the use of radioactive markers. German respondents had relatively lower money-equivalent values for test features compared with respondents in the United Kingdom. CONCLUSIONS: Respondents preferred less invasive diagnostic procedures and tests with higher accuracy and expressed a willingness to pay up to €700 to receive a less invasive test with the highest accuracy.
Resumo:
CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.
Resumo:
X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.
A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.
Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.
The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).
First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.
Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.
Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.
The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.
To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.
The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.
The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.
Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.
The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.
In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.
Resumo:
Advancements in retinal imaging technologies have drastically improved the quality of eye care in the past couple decades. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are two examples of critical imaging modalities for the diagnosis of retinal pathologies. However current-generation SLO and OCT systems have limitations in diagnostic capability due to the following factors: the use of bulky tabletop systems, monochromatic imaging, and resolution degradation due to ocular aberrations and diffraction.
Bulky tabletop SLO and OCT systems are incapable of imaging patients that are supine, under anesthesia, or otherwise unable to maintain the required posture and fixation. Monochromatic SLO and OCT imaging prevents the identification of various color-specific diagnostic markers visible with color fundus photography like those of neovascular age-related macular degeneration. Resolution degradation due to ocular aberrations and diffraction has prevented the imaging of photoreceptors close to the fovea without the use of adaptive optics (AO), which require bulky and expensive components that limit the potential for widespread clinical use.
In this dissertation, techniques for extending the diagnostic capability of SLO and OCT systems are developed. These techniques include design strategies for miniaturizing and combining SLO and OCT to permit multi-modal, lightweight handheld probes to extend high quality retinal imaging to pediatric eye care. In addition, a method for extending true color retinal imaging to SLO to enable high-contrast, depth-resolved, high-fidelity color fundus imaging is demonstrated using a supercontinuum light source. Finally, the development and combination of SLO with a super-resolution confocal microscopy technique known as optical photon reassignment (OPRA) is demonstrated to enable high-resolution imaging of retinal photoreceptors without the use of adaptive optics.