5 resultados para Development strategy
em Duke University
Resumo:
BACKGROUND: Palliative medicine has made rapid progress in establishing its scientific and clinical legitimacy, yet the evidence base to support clinical practice remains deficient in both the quantity and quality of published studies. Historically, the conduct of research in palliative care populations has been impeded by multiple barriers including health care system fragmentation, small number and size of potential sites for recruitment, vulnerability of the population, perceptions of inappropriateness, ethical concerns, and gate-keeping. METHODS: A group of experienced investigators with backgrounds in palliative care research convened to consider developing a research cooperative group as a mechanism for generating high-quality evidence on prioritized, clinically relevant topics in palliative care. RESULTS: The resulting Palliative Care Research Cooperative (PCRC) agreed on a set of core principles: active, interdisciplinary membership; commitment to shared research purposes; heterogeneity of participating sites; development of research capacity in participating sites; standardization of methodologies, such as consenting and data collection/management; agile response to research requests from government, industry, and investigators; focus on translation; education and training of future palliative care researchers; actionable results that can inform clinical practice and policy. Consensus was achieved on a first collaborative study, a randomized clinical trial of statin discontinuation versus continuation in patients with a prognosis of less than 6 months who are taking statins for primary or secondary prevention. This article describes the formation of the PCRC, highlighting processes and decisions taken to optimize the cooperative group's success.
Resumo:
The ability to manipulate the coordination chemistry of metal ions has significant ramifications for the study and treatment of metal-related health concerns, including iron overload, UV skin damage, and microbial infection among many other conditions. To address this concern, chelating agents that change their metal binding characteristics in response to external stimuli have been synthesized and characterized by several spectroscopic and chromatographic analytical methods. The primary stimuli of interest for this work are light and hydrogen peroxide.
Herein we report the previously unrecognized photochemistry of aroylhydrazone metal chelator ((E)-N′-[1-(2-hydroxyphenyl)ethyliden]isonicotinoylhydrazide) (HAPI) and its relation to HAPI metal binding properties. Based on promising initial results, a series of HAPI analogues was prepared to probe the structure-function relationships of aroylhydrazone photochemistry. These efforts elucidate the tunable nature of several aroylhydrazone photoswitching properties.
Ongoing efforts in this laboratory seek to develop compounds called prochelators that exhibit a switch from low to high metal binding affinity upon activation by a stimulus of interest. In this context, we present new strategies to install multiple desired functions into a single structure. The prochelator 2-((E)-1-(2-isonicotinoylhydrazono)ethyl)phenyl (E)-3-(2,4-dihydroxyphenyl)acrylate (PC-HAPI) is masked with a photolabile trans-cinnamic acid protecting group that releases umbelliferone, a UV-absorbing, antioxidant coumarin along with a chelating agent upon UV irradiation. In addition to the antioxidant effects of the coumarin, the released chelator (HAPI) inhibits metal-catalyzed production of damaging reactive oxygen species. Finally a peroxide-sensitive prochelator quinolin-8-yl (Z)-3-(4-hydroxy-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)acrylate (BCQ) has been prepared using a novel synthetic route for functionalized cis-cinnamate esters. BCQ uses a novel masking strategy to trigger a 90-fold increase in fluorescence emission, along with the release of a desired chelator, in the presence of hydrogen peroxide.
Resumo:
BACKGROUND: Web-based decision aids are increasingly important in medical research and clinical care. However, few have been studied in an intensive care unit setting. The objectives of this study were to develop a Web-based decision aid for family members of patients receiving prolonged mechanical ventilation and to evaluate its usability and acceptability. METHODS: Using an iterative process involving 48 critical illness survivors, family surrogate decision makers, and intensivists, we developed a Web-based decision aid addressing goals of care preferences for surrogate decision makers of patients with prolonged mechanical ventilation that could be either administered by study staff or completed independently by family members (Development Phase). After piloting the decision aid among 13 surrogate decision makers and seven intensivists, we assessed the decision aid's usability in the Evaluation Phase among a cohort of 30 surrogate decision makers using the Systems Usability Scale (SUS). Acceptability was assessed using measures of satisfaction and preference for electronic Collaborative Decision Support (eCODES) versus the original printed decision aid. RESULTS: The final decision aid, termed 'electronic Collaborative Decision Support', provides a framework for shared decision making, elicits relevant values and preferences, incorporates clinical data to personalize prognostic estimates generated from the ProVent prediction model, generates a printable document summarizing the user's interaction with the decision aid, and can digitally archive each user session. Usability was excellent (mean SUS, 80 ± 10) overall, but lower among those 56 years and older (73 ± 7) versus those who were younger (84 ± 9); p = 0.03. A total of 93% of users reported a preference for electronic versus printed versions. CONCLUSIONS: The Web-based decision aid for ICU surrogate decision makers can facilitate highly individualized information sharing with excellent usability and acceptability. Decision aids that employ an electronic format such as eCODES represent a strategy that could enhance patient-clinician collaboration and decision making quality in intensive care.
Resumo:
BACKGROUND/AIMS: The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. METHODS: Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. RESULTS: The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over 2 years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interactions with the technology were participant-initiated. CONCLUSION: The complexity and length of the technology-based randomized clinical trial created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the adaptive intervention design. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support adaptive intervention design in long-term, technology-based studies, as well as developing the interventions themselves.
Resumo:
My dissertation work integrates comparative transcriptomics and functional analyses to investigate gene expression changes underlying two significant aspects of sea urchin evolution and development: the dramatic developmental changes associated with an ecologically significant shift in life history strategy and the development of the unusual radial body plan of adult sea urchins.
In Chapter 2, I investigate evolutionary changes in gene expression underlying the switch from feeding (planktotrophic) to nonfeeding (lecithotrophic) development in sea urchins. In order to identify these changes, I used Illumina RNA-seq to measure expression dynamics across 7 developmental stages in three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and an outgroup planktotroph Lytechinus variegatus. My analyses draw on a well-characterized developmental gene regulatory network (GRN) in sea urchins to understand how the ancestral planktotrophic developmental program was altered during the evolution of lecithotrophic development. My results suggest that changes in gene expression profiles occurred more frequently across the transcriptome during the evolution of lecithotrophy than during the persistence of planktotrophy. These changes were even more pronounced within the GRN than across the transcriptome as a whole, and occurred in each network territory (skeletogenic, endomesoderm and ectoderm). I found evidence for both conservation and divergence of regulatory interactions in the network, as well as significant changes in the expression of genes with known roles in larval skeletogenesis, which is dramatically altered in lecithotrophs. I further explored network dynamics between species using coexpression analyses, which allowed me to identify novel players likely involved in sea urchin neurogenesis and endoderm patterning.
In Chapter 3, I investigate developmental changes in gene expression underlying radial body plan development and metamorphosis in H. erythrogramma. Using Illumina RNA-seq, I measured gene expression profiles across larval, metamorphic, and post-metamorphic life cycle phases. My results present a high-resolution view of gene expression dynamics during the complex transition from pre- to post-metamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases.
Collectively, my investigations provide an important foundation for future, empirical studies to investigate the functional role of gene expression change in the evolution of developmental differences between species and also for the generation of the unusual radial body plan of sea urchins.