4 resultados para Designs For Interference And Competition

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this dissertation is to examine, model and estimate firm responses to

demand shocks by focusing on specific industries where demand shocks are well

identified. Combining reduced-form evidence and structural analysis, this dissertation

extends the economic literature by focusing on within-firm responses of firms

to two important demand shocks that are identifiable in empirical settings. First,

I focus on how firms respond to a decrease in effective demand due to competition

shocks coming from globalization. By considering China's accession to the World

Trade Organization in 2001 and its impact on the apparel industry, the aim of these

chapters is to answer how firms react to the increase in Chinese import competition,

what is the mechanism behind these responses, and how important they are in explaining

the survival of the Peruvian apparel industry. Second, I study how suppliers'

survival probability relates to the sudden disruption of their main customer-supplier

relationships with downstream manufacturers, conditional on suppliers' own idiosyncratic

characteristics such as physical productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding consumer behavior is critical for firms' decision making. How consumers make decisions about what they want and buy directly affect the profits of firms. Therefore, it is important to consider consumer behaviors and incorporate them into the model when studying the optimal strategy of firms and competition between firms. In this dissertation, I study rich and interesting consumer behaviors and their impact on firms' strategy in two essays. The first essay considers consumers' shopping cost which leads to their preference for one-stop shopping. I examine how store visit costs and consumer knowledge about a product affect the strategic store choice of consumers and, in turn, the pricing, customer service and advertising decisions of competing retailers. My analysis offers insights on how specialty stores can compete with big-box retailers. In the second essay, I focus on a well-established psychology phenomenon, cognitive dissonance. I incorporate the idea of cognitive dissonance into a model of spatial competition and examine its implications for selling strategy. I provide new insight on the profitability of advance selling and spot selling as well as the pricing of bundle and its components. Collectively, two essays in this dissertation introduce novel ways to model consumer behaviors and help to understand the impact of consumer behaviors on firm profitability and strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own energetic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communication. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints.

The backscatter channel presents a unique set of challenges. Unlike a conventional one-way communication (in which the information source is also the energy source), the backscatter channel experiences strong self-interference and spread Doppler clutter that mask the information-bearing (modulated) signal scattered from the device. Both of these sources of interference arise from the scattering of the transmitted signal off of objects, both stationary and moving, in the environment. Additionally, the measurement of the location of the backscatter device is negatively affected by both the clutter and the modulation of the signal return.

This work proposes a channel coding framework for the backscatter channel consisting of a bi-static transmitter/receiver pair and a quasi-cooperative transponder. It proposes to use run-length limited coding to mitigate the background self-interference and spread-Doppler clutter with only a small decrease in communication rate. The proposed method applies to both binary phase-shift keying (BPSK) and quadrature-amplitude modulation (QAM) scheme and provides an increase in rate by up to a factor of two compared with previous methods.

Additionally, this work analyzes the use of frequency modulation and bi-phase waveform coding for the transmitted (interrogating) waveform for high precision range estimation of the transponder location. Compared to previous methods, optimal lower range sidelobes are achieved. Moreover, since both the transmitted (interrogating) waveform coding and transponder communication coding result in instantaneous phase modulation of the signal, cross-interference between localization and communication tasks exists. Phase discriminating algorithm is proposed to make it possible to separate the waveform coding from the communication coding, upon reception, and achieve localization with increased signal energy by up to 3 dB compared with previous reported results.

The joint communication-localization framework also enables a low-complexity receiver design because the same radio is used both for localization and communication.

Simulations comparing the performance of different codes corroborate the theoretical results and offer possible trade-off between information rate and clutter mitigation as well as a trade-off between choice of waveform-channel coding pairs. Experimental results from a brass-board microwave system in an indoor environment are also presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multifunctional calcium/calmodulin dependent protein kinases (CaMKs) are key regulators of spine structural plasticity and long-term potentiation (LTP) in neurons. CaMKs have promiscuous and overlapping substrate recognition motifs, and are distinguished in their regulatory role based on differences in the spatiotemporal dynamics of activity. While the function and activity of CaMKII in synaptic plasticity has been extensively studied, that of CaMKI, another major class of CaMK required for LTP, still remain elusive.

Here, we develop a Förster’s Resonance Energy Transfer (FRET) based sensor to measure the spatiotemporal activity dynamics of CaMK1. We monitored CaMKI activity using 2-photon fluorescence lifetime imaging, while inducing LTP in single dendritic spines of rat (Rattus Norvegicus, strain Sprague Dawley) hippocampal CA1 pyramidal neurons using 2-photon glutamate uncaging. Using RNA-interference and pharmacological means, we also characterize the role of CaMKI during spine structural plasticity.

We found that CaMKI was rapidly and transiently activated with a rise time of ~0.3 s and decay time of ~1 s in response to each uncaging pulse. Activity of CaMKI spread out of the spine. Phosphorylation of CaMKI by CaMKK was required for this spreading and for the initial phase of structural LTP. Combined with previous data showing that CaMKII is restricted to the stimulated spine and required for long-term maintenance of structural LTP, these results suggest that CaMK diversity allows the same incoming signal – calcium – to independently regulate distinct phases of LTP by activating different CaMKs with distinct spatiotemporal dynamics.