4 resultados para Dental radiography
em Duke University
Resumo:
PURPOSE: The purpose of this work is to improve the noise power spectrum (NPS), and thus the detective quantum efficiency (DQE), of computed radiography (CR) images by correcting for spatial gain variations specific to individual imaging plates. CR devices have not traditionally employed gain-map corrections, unlike the case with flat-panel detectors, because of the multiplicity of plates used with each reader. The lack of gain-map correction has limited the DQE(f) at higher exposures with CR. This current work describes a feasible solution to generating plate-specific gain maps. METHODS: Ten high-exposure open field images were taken with an RQA5 spectrum, using a sixth generation CR plate suspended in air without a cassette. Image values were converted to exposure, the plates registered using fiducial dots on the plate, the ten images averaged, and then high-pass filtered to remove low frequency contributions from field inhomogeneity. A gain-map was then produced by converting all pixel values in the average into fractions with mean of one. The resultant gain-map of the plate was used to normalize subsequent single images to correct for spatial gain fluctuation. To validate performance, the normalized NPS (NNPS) for all images was calculated both with and without the gain-map correction. Variations in the quality of correction due to exposure levels, beam voltage/spectrum, CR reader used, and registration were investigated. RESULTS: The NNPS with plate-specific gain-map correction showed improvement over the noncorrected case over the range of frequencies from 0.15 to 2.5 mm(-1). At high exposure (40 mR), NNPS was 50%-90% better with gain-map correction than without. A small further improvement in NNPS was seen from carefully registering the gain-map with subsequent images using small fiducial dots, because of slight misregistration during scanning. Further improvement was seen in the NNPS from scaling the gain map about the mean to account for different beam spectra. CONCLUSIONS: This study demonstrates that a simple gain-map can be used to correct for the fixed-pattern noise in a given plate and thus improve the DQE of CR imaging. Such a method could easily be implemented by manufacturers because each plate has a unique bar code and the gain-map for all plates associated with a reader could be stored for future retrieval. These experiments indicated that an improvement in NPS (and hence, DQE) is possible, depending on exposure level, over a wide range of frequencies with this technique.
Resumo:
Paleoprimatologists depend on relationships between form and function of teeth to reconstruct the diets of fossil species. Most of this work has been limited to studies of unworn teeth. A new approach, dental topographic analysis, allows the characterization and comparison of worn primate teeth. Variably worn museum specimens have been used to construct species-specific wear sequences so that measurements can be compared by wear stage among taxa with known differences in diet. This assumes that individuals in a species tend to wear their molar teeth in similar ways, a supposition that has yet to be tested. Here we evaluate this assumption with a longitudinal study of changes in tooth form over time in primates. Fourteen individual mantled howling monkeys (Alouatta palliata) were captured and then recaptured after 2, 4, and 7 years when possible at Hacienda La Pacifica in Costa Rica between 1989-1999. Dental impressions were taken each time, and molar casts were produced and analyzed using dental topographic analysis. Results showed consistent decreases in crown slope and occlusal relief. In contrast, crown angularity, a measure of surface jaggedness, remained fairly constant except with extreme wear. There were no evident differences between specimens collected in different microhabitats. These results suggest that different individual mantled howling monkeys wear their teeth down in similar ways, evidently following a species-specific wear sequence. Dental topographic analysis may therefore be used to compare morphology among similarly worn individuals from different species.
Resumo:
One problem with dental microwear analyses of museum material is that investigators can never be sure of the diets of the animals in question. An obvious solution to this problem is to work with live animals. Recent work with laboratory primates has shown that high resolution dental impressions can be obtained from live animals. The purpose of this study was to use similar methods to begin to document rates and patterns of dental microwear for primates in the wild. Thirty-three Alouatta palliata were captured during the wet season at Hacienda La Pacifica near Canas, Costa Rica. Dental impressions were taken and epoxy casts of the teeth were prepared using the methods of Teaford and Oyen (1989a). Scanning electron micrographs were taken of the left mandibular second molars at magnifications of 200x and 500x. Lower magnification images were used to calculate rates of wear, and higher magnification images were used to measure the size and shape of microwear features. Results indicate that, while basic patterns of dental microwear are similar in museum samples and samples of live, wild-trapped animals of the same species, ecological differences between collection locales may lead to significant intraspecific differences in dental microwear. More importantly, rates of microwear provide the first direct evidence of differences in molar use between monkeys and humans.
Resumo:
Dental microwear researchers consider exogenous grit or dust to be an important cause of microscopic wear on primate teeth. No study to date has examined the accumulation of such abrasives on foods eaten by primates in the forest. This investigation introduces a method to collect dust at various heights in the canopy. Results from dust collection studies conducted at the primate research stations at Ketambe in Indonesia, and Hacienda La Pacifica in Costa Rica indicate that 1) grit collects throughout the canopy in both open country and tropical rain forest environments; and 2) the sizes and concentrations of dust particles accumulated over a fixed period of time differ depending on site location and season of investigation. These results may hold important implications for the interpretation of microwear on primate teeth.