2 resultados para Defective Vehicles.

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Individuals without prior immunity to a vaccine vector may be more sensitive to reactions following injection, but may also show optimal immune responses to vaccine antigens. To assess safety and maximal tolerated dose of an adenoviral vaccine vector in volunteers without prior immunity, we evaluated a recombinant replication-defective adenovirus type 5 (rAd5) vaccine expressing HIV-1 Gag, Pol, and multiclade Env proteins, VRC-HIVADV014-00-VP, in a randomized, double-blind, dose-escalation, multicenter trial (HVTN study 054) in HIV-1-seronegative participants without detectable neutralizing antibodies (nAb) to the vector. As secondary outcomes, we also assessed T-cell and antibody responses. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers received one dose of vaccine at either 10(10) or 10(11) adenovector particle units, or placebo. T-cell responses were measured against pools of global potential T-cell epitope peptides. HIV-1 binding and neutralizing antibodies were assessed. Systemic reactogenicity was greater at the higher dose, but the vaccine was well tolerated at both doses. Although no HIV infections occurred, commercial diagnostic assays were positive in 87% of vaccinees one year after vaccination. More than 85% of vaccinees developed HIV-1-specific T-cell responses detected by IFN-γ ELISpot and ICS assays at day 28. T-cell responses were: CD8-biased; evenly distributed across the three HIV-1 antigens; not substantially increased at the higher dose; and detected at similar frequencies one year following injection. The vaccine induced binding antibodies against at least one HIV-1 Env antigen in all recipients. CONCLUSIONS/SIGNIFICANCE: This vaccine appeared safe and was highly immunogenic following a single dose in human volunteers without prior nAb against the vector. TRIAL REGISTRATION: ClinicalTrials.gov NCT00119873.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocyte chemotaxis is a complex process by which cells move within tissues and across barriers such as vascular endothelium and is usually stimulated by chemokines such as stromal cell-derived factor-1 (CXCL12) acting via G protein-coupled receptors. Because members of this receptor family are regulated ("desensitized") by G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding, we examined signaling and chemotactic responses in splenocytes derived from knockout mice deficient in various beta-arrestins and GRKs, with the expectation that these responses might be enhanced. Knockouts of beta-arrestin2, GRK5, and GRK6 were examined because all three proteins are expressed at high levels in purified mouse CD3+ T and B220+ B splenocytes. CXCL12 stimulation of membrane GTPase activity was unaffected in splenocytes derived from GRK5-deficient mice but was increased in splenocytes from the beta-arrestin2- and GRK6-deficient animals. Surprisingly, however, both T and B cells from beta-arrestin2-deficient animals and T cells from GRK6-deficient animals were strikingly impaired in their ability to respond to CXCL12 both in transwell migration assays and in transendothelial migration assays. Chemotactic responses of lymphocytes from GRK5-deficient mice were unaffected. Thus, these results indicate that beta-arrestin2 and GRK6 actually play positive regulatory roles in mediating the chemotactic responses of T and B lymphocytes to CXCL12.