3 resultados para Days of Heaven

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The incidence and epidemiology of invasive fungal infections (IFIs), a leading cause of death among hematopoeitic stem cell transplant (HSCT) recipients, are derived mainly from single-institution retrospective studies. METHODS: The Transplant Associated Infections Surveillance Network, a network of 23 US transplant centers, prospectively enrolled HSCT recipients with proven and probable IFIs occurring between March 2001 and March 2006. We collected denominator data on all HSCTs preformed at each site and clinical, diagnostic, and outcome information for each IFI case. To estimate trends in IFI, we calculated the 12-month cumulative incidence among 9 sequential subcohorts. RESULTS: We identified 983 IFIs among 875 HSCT recipients. The median age of the patients was 49 years; 60% were male. Invasive aspergillosis (43%), invasive candidiasis (28%), and zygomycosis (8%) were the most common IFIs. Fifty-nine percent and 61% of IFIs were recognized within 60 days of neutropenia and graft-versus-host disease, respectively. Median onset of candidiasis and aspergillosis after HSCT was 61 days and 99 days, respectively. Within a cohort of 16,200 HSCT recipients who received their first transplants between March 2001 and September 2005 and were followed up through March 2006, we identified 718 IFIs in 639 persons. Twelve-month cumulative incidences, based on the first IFI, were 7.7 cases per 100 transplants for matched unrelated allogeneic, 8.1 cases per 100 transplants for mismatched-related allogeneic, 5.8 cases per 100 transplants for matched-related allogeneic, and 1.2 cases per 100 transplants for autologous HSCT. CONCLUSIONS: In this national prospective surveillance study of IFIs in HSCT recipients, the cumulative incidence was highest for aspergillosis, followed by candidiasis. Understanding the epidemiologic trends and burden of IFIs may lead to improved management strategies and study design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transgenic labeling of innate immune cell lineages within the larval zebrafish allows for real-time, in vivo analyses of microbial pathogenesis within a vertebrate host. To date, labeling of zebrafish macrophages has been relatively limited, with the most specific expression coming from the mpeg1 promoter. However, mpeg1 transcription at both endogenous and transgenic loci becomes attenuated in the presence of intracellular pathogens, including Salmonella typhimurium and Mycobacterium marinum. Here, we describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection. Additionally, we have developed a novel macrophage-specific Cre transgenic line under the control of mfap4, enabling macrophage-specific expression using existing floxed transgenic lines. These tools enrich the repertoire of transgenic lines and promoters available for studying zebrafish macrophage dynamics during infection and inflammation and add flexibility to the design of future macrophage-specific transgenic lines.