2 resultados para Data utility
em Duke University
Resumo:
BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.