4 resultados para DNA DELIVERY

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic interaction is a strong force that attracts positively and negatively charged molecules to each other. Such an interaction is formed between positively charged polycationic polymers and negatively charged nucleic acids. In this dissertation, the electrostatic attraction between polycationic polymers and nucleic acids is exploited for applications in oral gene delivery and nucleic acid scavenging. An enhanced nanoparticle for oral gene delivery of a human Factor IX (hFIX) plasmid is developed using the polycationic polysaccharide, chitosan (Ch), in combination with protamine sulfate (PS) to treat hemophilia B. For nucleic acid scavenging purposes, the development of an effective nucleic acid scavenging nanofiber platform is described for dampening hyper-inflammation and reducing the formation of biofilms.

Non-viral gene therapy may be an attractive alternative to chronic protein replacement therapy. Orally administered non-viral gene vectors have been investigated for more than one decade with little progress made beyond the initial studies. Oral administration has many benefits over intravenous injection including patient compliance and overall cost; however, effective oral gene delivery systems remain elusive. To date, only chitosan carriers have demonstrated successful oral gene delivery due to chitosan’s stability via the oral route. In this study, we increase the transfection efficiency of the chitosan gene carrier by adding protamine sulfate to the nanoparticle formulation. The addition of protamine sulfate to the chitosan nanoparticles results in up to 42x higher in vitro transfection efficiency than chitosan nanoparticles without protamine sulfate. Therapeutic levels of hFIX protein are detected after oral delivery of Ch/PS/phFIX nanoparticles in 5/12 mice in vivo, ranging from 3 -132 ng/mL, as compared to levels below 4 ng/mL in 1/12 mice given Ch/phFIX nanoparticles. These results indicate the protamine sulfate enhances the transfection efficiency of chitosan and should be considered as an effective ternary component for applications in oral gene delivery.

Dying cells release nucleic acids (NA) and NA-complexes that activate the inflammatory pathways of immune cells. Sustained activation of these pathways contributes to chronic inflammation related to autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. Studies have shown that certain soluble, cationic polymers can scavenge extracellular nucleic acids and inhibit RNA-and DNA-mediated activation of Toll-like receptors (TLRs) and inflammation. In this study, the cationic polymers are incorporated onto insoluble nanofibers, enabling local scavenging of negatively charged pro-inflammatory species such as damage-associated molecular pattern (DAMP) molecules in the extracellular space, reducing cytotoxicity related to unwanted internalization of soluble cationic polymers. In vitro data show that electrospun nanofibers grafted with cationic polymers, termed nucleic acid scavenging nanofibers (NASFs), can scavenge nucleic acid-based agonists of TLR 3 and TLR 9 directly from serum and prevent the production of NF-ĸB, an immune system activating transcription factor while also demonstrating low cytotoxicity. NASFs formed from poly (styrene-alt-maleic anhydride) conjugated with 1.8 kDa branched polyethylenimine (bPEI) resulted in randomly aligned fibers with diameters of 486±9 nm. NASFs effectively eliminate the immune stimulating response of NA based agonists CpG (TLR 9) and poly (I:C) (TLR 3) while not affecting the activation caused by the non-nucleic acid TLR agonist pam3CSK4. Results in a more biologically relevant context of doxorubicin-induced cell death in RAW cells demonstrates that NASFs block ~25-40% of NF-ĸβ response in Ramos-Blue cells treated with RAW extracellular debris, ie DAMPs, following doxorubicin treatment. Together, these data demonstrate that the formation of cationic NASFs by a simple, replicable, modular technique is effective and that such NASFs are capable of modulating localized inflammatory responses.

An understandable way to clinically apply the NASF is as a wound bandage. Chronic wounds are a serious clinical problem that is attributed to an extended period of inflammation as well as the presence of biofilms. An NASF bandage can potentially have two benefits in the treatment of chronic wounds by reducing the inflammation and preventing biofilm formation. NASF can prevent biofilm formation by reducing the NA present in the wound bed, therefore removing large components of what the bacteria use to develop their biofilm matrix, the extracellular polymeric substance, without which the biofilm cannot develop. The NASF described above is used to show the effect of the nucleic acid scavenging technology on in vitro and in vivo biofilm formation of P. aeruginosa, S. aureus, and S. epidermidis biofilms. The in vitro studies demonstrated that the NASFs were able to significantly reduce the biofilm formation in all three bacterial strains. In vivo studies of the NASF on mouse wounds infected with biofilm show that the NASF retain their functionality and are able to scavenge DNA, RNA, and protein from the wound bed. The NASF remove DNA that are maintaining the inflammatory state of the open wound and contributing to the extracellular polymeric substance (EPS), such as mtDNA, and also removing proteins that are required for bacteria/biofilm formation and maintenance such as chaperonin, ribosomal proteins, succinyl CoA-ligase, and polymerases. However, the NASF are not successful at decreasing the wound healing time because their repeated application and removal disrupts the wound bed and removes proteins required for wound healing such as fibronectin, vibronectin, keratin, and plasminogen. Further optimization of NASF treatment duration and potential combination treatments should be tested to reduce the unwanted side effects of increased wound healing time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of DNA as a polymeric building material transcends its function in biology and is exciting in bionanotechnology for applications ranging from biosensing, to diagnostics, and to targeted drug delivery. These applications are enabled by DNA’s unique structural and chemical properties, embodied as a directional polyanion that exhibits molecular recognition capabilities. Hence, the efficient and precise synthesis of high molecular weight DNA materials has become key to advance DNA bionanotechnology. Current synthesis methods largely rely on either solid phase chemical synthesis or template-dependent polymerase amplification. The inherent step-by-step fashion of solid phase synthesis limits the length of the resulting DNA to typically less than 150 nucleotides. In contrast, polymerase based enzymatic synthesis methods (e.g., polymerase chain reaction) are not limited by product length, but require a DNA template to guide the synthesis. Furthermore, advanced DNA bionanotechnology requires tailorable structural and self-assembly properties. Current synthesis methods, however, often involve multiple conjugating reactions and extensive purification steps.

The research described in this dissertation aims to develop a facile method to synthesize high molecular weight, single stranded DNA (or polynucleotide) with versatile functionalities. We exploit the ability of a template-independent DNA polymerase−terminal deoxynucleotidyl transferase (TdT) to catalyze the polymerization of 2’-deoxyribonucleoside 5’-triphosphates (dNTP, monomer) from the 3’-hydroxyl group of an oligodeoxyribonucleotide (initiator). We termed this enzymatic synthesis method: TdT catalyzed enzymatic polymerization, or TcEP.

Specifically, this dissertation is structured to address three specific research aims. With the objective to generate high molecular weight polynucleotides, Specific Aim 1 studies the reaction kinetics of TcEP by investigating the polymerization of 2’-deoxythymidine 5’-triphosphates (monomer) from the 3’-hydroxyl group of oligodeoxyribothymidine (initiator) using in situ 1H NMR and fluorescent gel electrophoresis. We found that TcEP kinetics follows the “living” chain-growth polycondensation mechanism, and like in “living” polymerizations, the molecular weight of the final product is determined by the starting molar ratio of monomer to initiator. The distribution of the molecular weight is crucially influenced by the molar ratio of initiator to TdT. We developed a reaction kinetics model that allows us to quantitatively describe the reaction and predict the molecular weight of the reaction products.

Specific Aim 2 further explores TcEP’s ability to transcend homo-polynucleotide synthesis by varying the choices of initiators and monomers. We investigated the effects of initiator length and sequence on TcEP, and found that the minimum length of an effective initiator should be 10 nucleotides and that the formation of secondary structures close to the 3’-hydroxyl group can impede the polymerization reaction. We also demonstrated TcEP’s capacity to incorporate a wide range of unnatural dNTPs into the growing chain, such as, hydrophobic fluorescent dNTP and fluoro modified dNTP. By harnessing the encoded nucleotide sequence of an initiator and the chemical diversity of monomers, TcEP enables us to introduce molecular recognition capabilities and chemical functionalities on the 5’-terminus and 3’-terminus, respectively.

Building on TcEP’s synthesis capacities, in Specific Aim 3 we invented a two-step strategy to synthesize diblock amphiphilic polynucleotides, in which the first, hydrophilic block serves as a macro-initiator for the growth of the second block, comprised of natural and/or unnatural nucleotides. By tuning the hydrophilic length, we synthesized the amphiphilic diblock polynucleotides that can self-assemble into micellar structures ranging from star-like to crew-cut morphologies. The observed self-assembly behaviors agree with predictions from dissipative particle dynamics simulations as well as scaling law for polyelectrolyte block copolymers.

In summary, we developed an enzymatic synthesis method (i.e., TcEP) that enables the facile synthesis of high molecular weight polynucleotides with low polydispersity. Although we can control the nucleotide sequence only to a limited extent, TcEP offers a method to integrate an oligodeoxyribonucleotide with specific sequence at the 5’-terminus and to incorporate functional groups along the growing chains simultaneously. Additionally, we used TcEP to synthesize amphiphilic polynucleotides that display self-assemble ability. We anticipate that our facile synthesis method will not only advance molecular biology, but also invigorate materials science and bionanotechnology.