6 resultados para DIGITAL CARTOGRAPHY APPLIED TO HISTORICAL MAPS

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last two decades, the field of homogeneous gold catalysis has been

extremely active, growing at a rapid pace. Another rapidly-growing field—that of

computational chemistry—has often been applied to the investigation of various gold-

catalyzed reaction mechanisms. Unfortunately, a number of recent mechanistic studies

have utilized computational methods that have been shown to be inappropriate and

inaccurate in their description of gold chemistry. This work presents an overview of

available computational methods with a focus on the approximations and limitations

inherent in each, and offers a review of experimentally-characterized gold(I) complexes

and proposed mechanisms as compared with their computationally-modeled

counterparts. No aim is made to identify a “recommended” computational method for

investigations of gold catalysis; rather, discrepancies between experimentally and

computationally obtained values are highlighted, and the systematic errors between

different computational methods are discussed.