6 resultados para DIFFERENTIAL EXPRESSION
em Duke University
Resumo:
Eukaryotic genomes are mostly composed of noncoding DNA whose role is still poorly understood. Studies in several organisms have shown correlations between the length of the intergenic and genic sequences of a gene and the expression of its corresponding mRNA transcript. Some studies have found a positive relationship between intergenic sequence length and expression diversity between tissues, and concluded that genes under greater regulatory control require more regulatory information in their intergenic sequences. Other reports found a negative relationship between expression level and gene length and the interpretation was that there is selection pressure for highly expressed genes to remain small. However, a correlation between gene sequence length and expression diversity, opposite to that observed for intergenic sequences, has also been reported, and to date there is no testable explanation for this observation. To shed light on these varied and sometimes conflicting results, we performed a thorough study of the relationships between sequence length and gene expression using cell-type (tissue) specific microarray data in Arabidopsis thaliana. We measured median gene expression across tissues (expression level), expression variability between tissues (expression pattern uniformity), and expression variability between replicates (expression noise). We found that intergenic (upstream and downstream) and genic (coding and noncoding) sequences have generally opposite relationships with respect to expression, whether it is tissue variability, median, or expression noise. To explain these results we propose a model, in which the lengths of the intergenic and genic sequences have opposite effects on the ability of the transcribed region of the gene to be epigenetically regulated for differential expression. These findings could shed light on the role and influence of noncoding sequences on gene expression.
Resumo:
Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds--songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65-300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.
Resumo:
Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors.
Resumo:
Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.
Resumo:
Brain tumors are typically resistant to conventional chemotherapeutics, most of which initiate apoptosis upstream of mitochondrial cytochrome c release. In this study, we demonstrate that directly activating apoptosis downstream of the mitochondria, with cytosolic cytochrome c, kills brain tumor cells but not normal brain tissue. Specifically, cytosolic cytochrome c is sufficient to induce apoptosis in glioblastoma and medulloblastoma cell lines. In contrast, primary neurons from the cerebellum and cortex are remarkably resistant to cytosolic cytochrome c. Importantly, tumor tissue from mouse models of both high-grade astrocytoma and medulloblastoma display hypersensitivity to cytochrome c when compared with surrounding brain tissue. This differential sensitivity to cytochrome c is attributed to high Apaf-1 levels in the tumor tissue compared with low Apaf-1 levels in the adjacent brain tissue. These differences in Apaf-1 abundance correlate with differences in the levels of E2F1, a previously identified activator of Apaf-1 transcription. ChIP assays reveal that E2F1 binds the Apaf-1 promoter specifically in tumor tissue, suggesting that E2F1 contributes to the expression of Apaf-1 in brain tumors. Together, these results demonstrate an unexpected sensitivity of brain tumors to postmitochondrial induction of apoptosis. Moreover, they raise the possibility that this phenomenon could be exploited therapeutically to selectively kill brain cancer cells while sparing the surrounding brain parenchyma.
Resumo:
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.