3 resultados para DEVELOPMENT PLANNING

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowledge-based radiation treatment is an emerging concept in radiotherapy. It

mainly refers to the technique that can guide or automate treatment planning in

clinic by learning from prior knowledge. Dierent models are developed to realize

it, one of which is proposed by Yuan et al. at Duke for lung IMRT planning. This

model can automatically determine both beam conguration and optimization ob-

jectives with non-coplanar beams based on patient-specic anatomical information.

Although plans automatically generated by this model demonstrate equivalent or

better dosimetric quality compared to clinical approved plans, its validity and gener-

ality are limited due to the empirical assignment to a coecient called angle spread

constraint dened in the beam eciency index used for beam ranking. To eliminate

these limitations, a systematic study on this coecient is needed to acquire evidences

for its optimal value.

To achieve this purpose, eleven lung cancer patients with complex tumor shape

with non-coplanar beams adopted in clinical approved plans were retrospectively

studied in the frame of the automatic lung IMRT treatment algorithm. The primary

and boost plans used in three patients were treated as dierent cases due to the

dierent target size and shape. A total of 14 lung cases, thus, were re-planned using

the knowledge-based automatic lung IMRT planning algorithm by varying angle

spread constraint from 0 to 1 with increment of 0.2. A modied beam angle eciency

index used for navigate the beam selection was adopted. Great eorts were made to assure the quality of plans associated to every angle spread constraint as good

as possible. Important dosimetric parameters for PTV and OARs, quantitatively

re

ecting the plan quality, were extracted from the DVHs and analyzed as a function

of angle spread constraint for each case. Comparisons of these parameters between

clinical plans and model-based plans were evaluated by two-sampled Students t-tests,

and regression analysis on a composite index built on the percentage errors between

dosimetric parameters in the model-based plans and those in the clinical plans as a

function of angle spread constraint was performed.

Results show that model-based plans generally have equivalent or better quality

than clinical approved plans, qualitatively and quantitatively. All dosimetric param-

eters except those for lungs in the automatically generated plans are statistically

better or comparable to those in the clinical plans. On average, more than 15% re-

duction on conformity index and homogeneity index for PTV and V40, V60 for heart

while an 8% and 3% increase on V5, V20 for lungs, respectively, are observed. The

intra-plan comparison among model-based plans demonstrates that plan quality does

not change much with angle spread constraint larger than 0.4. Further examination

on the variation curve of the composite index as a function of angle spread constraint

shows that 0.6 is the optimal value that can result in statistically the best achievable

plans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Outpatient palliative care, an evolving delivery model, seeks to improve continuity of care across settings and to increase access to services in hospice and palliative medicine (HPM). It can provide a critical bridge between inpatient palliative care and hospice, filling the gap in community-based supportive care for patients with advanced life-limiting illness. Low capacities for data collection and quantitative research in HPM have impeded assessment of the impact of outpatient palliative care. APPROACH: In North Carolina, a regional database for community-based palliative care has been created through a unique partnership between a HPM organization and academic medical center. This database flexibly uses information technology to collect patient data, entered at the point of care (e.g., home, inpatient hospice, assisted living facility, nursing home). HPM physicians and nurse practitioners collect data; data are transferred to an academic site that assists with analyses and data management. Reports to community-based sites, based on data they provide, create a better understanding of local care quality. CURRENT STATUS: The data system was developed and implemented over a 2-year period, starting with one community-based HPM site and expanding to four. Data collection methods were collaboratively created and refined. The database continues to grow. Analyses presented herein examine data from one site and encompass 2572 visits from 970 new patients, characterizing the population, symptom profiles, and change in symptoms after intervention. CONCLUSION: A collaborative regional approach to HPM data can support evaluation and improvement of palliative care quality at the local, aggregated, and statewide levels.