1 resultado para DERIVATIVE SECURITIES
em Duke University
Filtro por publicador
- Repository Napier (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (7)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Bibloteca do Senado Federal do Brasil (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Boston College Law School, Boston College (BC), United States (1)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (19)
- Central European University - Research Support Scheme (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (61)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (18)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (129)
- Instituto Politécnico do Porto, Portugal (3)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (9)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (22)
- Queensland University of Technology - ePrints Archive (323)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (66)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (8)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (68)
- University of Queensland eSpace - Australia (9)
- WestminsterResearch - UK (5)
Resumo:
Recent empirical findings suggest that the long-run dependence in U.S. stock market volatility is best described by a slowly mean-reverting fractionally integrated process. The present study complements this existing time-series-based evidence by comparing the risk-neutralized option pricing distributions from various ARCH-type formulations. Utilizing a panel data set consisting of newly created exchange traded long-term equity anticipation securities, or leaps, on the Standard and Poor's 500 stock market index with maturity times ranging up to three years, we find that the degree of mean reversion in the volatility process implicit in these prices is best described by a Fractionally Integrated EGARCH (FIEGARCH) model. © 1999 Elsevier Science S.A. All rights reserved.