2 resultados para Course of studies

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Purine catabolism may be an unappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. Accumulating evidence suggests a pivotal role of oxidative stress in schizophrenia pathology. METHODOLOGY/PRINCIPAL FINDINGS: Using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system, we compared 6 purine metabolites simultaneously in plasma between first-episode neuroleptic-naïve patients with schizophrenia (FENNS, n = 25) and healthy controls (HC, n = 30), as well as between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. Significantly higher levels of xanthosine (Xant) and lower levels of guanine (G) were seen in both patient groups compared to HC subjects. Moreover, the ratios of G/guanosine (Gr), uric acid (UA)/Gr, and UA/Xant were significantly lower, whereas the ratio of Xant/G was significantly higher in FENNS-BL than in HC. Such changes remained in FENNS-4w with exception that the ratio of UA/Gr was normalized. All 3 groups had significant correlations between G and UA, and Xan and hypoxanthine (Hx). By contrast, correlations of UA with each of Xan and Hx, and the correlation of Xan with Gr were all quite significant for the HC but not for the FENNS. Finally, correlations of Gr with each of UA and G were significant for both HC and FENNS-BL but not for the FENNS-4w. CONCLUSIONS/SIGNIFICANCE: During purine catabolism, both conversions of Gr to G and of Xant to Xan are reversible. Decreased ratios of product to precursor suggested a shift favorable to Xant production from Xan, resulting in decreased UA levels in the FENNS. Specifically, the reduced UA/Gr ratio was nearly normalized after 4 weeks of antipsychotic treatment. In addition, there are tightly correlated precursor and product relationships within purine pathways; although some of these correlations persist across disease or medication status, others appear to be lost among FENNS. Taken together, these results suggest that the potential for steady formation of antioxidant UA from purine catabolism is altered early in the course of illness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.